Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Front Mol Biosci ; 11: 1404319, 2024.
Article in English | MEDLINE | ID: mdl-38939509

ABSTRACT

The search for new therapeutic strategies against cancer has favored the emergence of rationally designed treatments. These treatments have focused on attacking cell plasticity mechanisms to block the transformation of epithelial cells into cancerous cells. The aim of these approaches was to control particularly lethal cancers such as hepatocellular carcinoma. However, they have not been able to control the progression of cancer for unknown reasons. Facing this scenario, emerging areas such as systems biology propose using engineering principles to design and optimize cancer treatments. Beyond the possibilities that this approach might offer, it is necessary to know whether its implementation at a clinical level is viable or not. Therefore, in this paper, we will review the engineering principles that could be applied to rationally design strategies against hepatocellular carcinoma, and discuss whether the necessary elements exist to implement them. In particular, we will emphasize whether these engineering principles could be applied to fight hepatocellular carcinoma.

2.
Mol Biol Rep ; 51(1): 763, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874813

ABSTRACT

BACKGROUND: Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In this work, we performed intra and inter-studies analyses to discover new genetic components that could participate in primary root growth. METHODS AND RESULTS: We used 639 accessions from nine different studies under control conditions and performed different GWAS tests. We found that primary root growth changes were associated with 41 genes, of which six (14.6%) have been previously described as inhibitors or promoters of primary root growth. The knockdown lines of two genes, Suppressor of Gene Silencing (SGS3), involved in tasiRNA processing, and a gene with a Sterile Alpha Motif (SAM) motif named NOJOCH MOOTS (NOJO), confirmed their role as repressors of primary root growth, none has been shown to participate in this developmental process before. CONCLUSIONS: In summary, our GWAS analysis of different available studies identified new genes that participate in primary root growth; two of them were identified as repressors of primary root growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Genome-Wide Association Study , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Genome-Wide Association Study/methods , Plant Roots/genetics , Plant Roots/growth & development , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Phenotype , Genes, Plant/genetics
3.
Plant Signal Behav ; 19(1): 2353536, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38771929

ABSTRACT

Cellular behavior, cell differentiation and ontogenetic development in eukaryotes result from complex interactions between epigenetic and classic molecular genetic mechanisms, with many of these interactions still to be elucidated. Histone deacetylase enzymes (HDACs) promote the interaction of histones with DNA by compacting the nucleosome, thus causing transcriptional repression. MADS-domain transcription factors are highly conserved in eukaryotes and participate in controlling diverse developmental processes in animals and plants, as well as regulating stress responses in plants. In this work, we focused on finding out putative interactions of Arabidopsis thaliana HDACs and MADS-domain proteins using an evolutionary perspective combined with bioinformatics analyses and testing the more promising predicted interactions through classic molecular biology tools. Through bioinformatic analyses, we found similarities between HDACs proteins from different organisms, which allowed us to predict a putative protein-protein interaction between the Arabidopsis thaliana deacetylase HDA15 and the MADS-domain protein XAANTAL1 (XAL1). The results of two-hybrid and Bimolecular Fluorescence Complementation analysis demonstrated in vitro and in vivo HDA15-XAL1 interaction in the nucleus. Likely, this interaction might regulate developmental processes in plants as is the case for this type of interaction in animals.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Histone Deacetylases , MADS Domain Proteins , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , MADS Domain Proteins/metabolism , MADS Domain Proteins/genetics , Protein Binding , Two-Hybrid System Techniques
4.
Front Oncol ; 14: 1304690, 2024.
Article in English | MEDLINE | ID: mdl-38634051

ABSTRACT

The main objective of the National Project for Research and Incidence of Childhood Leukemias is to reduce early mortality rates for these neoplasms in the vulnerable regions of Mexico. This project was conducted in the states of Oaxaca, Puebla, and Tlaxcala. A key strategy of the project is the implementation of an effective roadmap to ensure that leukemia patients are the target of maximum benefit of interdisciplinary collaboration between researchers, clinicians, surveyors, and laboratories. This strategy guarantees the comprehensive management of diagnosis and follow-up samples of pediatric patients with leukemia, centralizing, managing, and analyzing the information collected. Additionally, it allows for a precise diagnosis and monitoring of the disease through immunophenotype and measurable residual disease (MRD) studies, enhancing research and supporting informed clinical decisions for the first time in these regions through a population-based study. This initiative has significantly improved the diagnostic capacity of leukemia in girls, boys, and adolescents in the regions of Oaxaca, Puebla, and Tlaxcala, providing comprehensive, high-quality care with full coverage in the region. Likewise, it has strengthened collaboration between health institutions, researchers, and professionals in the sector, which contributes to reducing the impact of the disease on the community.

5.
Front Plant Sci ; 15: 1331269, 2024.
Article in English | MEDLINE | ID: mdl-38576790

ABSTRACT

MADS-domain transcription factors play pivotal roles in numerous developmental processes in Arabidopsis thaliana. While their involvement in flowering transition and floral development has been extensively examined, their functions in root development remain relatively unexplored. Here, we explored the function and genetic interaction of three MADS-box genes (XAL2, SOC1 and AGL24) in primary root development. By analyzing loss-of-function and overexpression lines, we found that SOC1 and AGL24, both critical components in flowering transition, redundantly act as repressors of primary root growth as the loss of function of either SOC1 or AGL24 partially recovers the primary root growth, meristem cell number, cell production rate, and the length of fully elongated cells of the short-root mutant xal2-2. Furthermore, we observed that the simultaneous overexpression of AGL24 and SOC1 leads to short-root phenotypes, affecting meristem cell number and fully elongated cell size, whereas SOC1 overexpression is sufficient to affect columella stem cell differentiation. Additionally, qPCR analyses revealed that these genes exhibit distinct modes of transcriptional regulation in roots compared to what has been previously reported for aerial tissues. We identified 100 differentially expressed genes in xal2-2 roots by RNA-seq. Moreover, our findings revealed that the expression of certain genes involved in cell differentiation, as well as stress responses, which are either upregulated or downregulated in the xal2-2 mutant, reverted to WT levels in the absence of SOC1 or AGL24.

6.
Front Immunol ; 15: 1344078, 2024.
Article in English | MEDLINE | ID: mdl-38312841

ABSTRACT

CD4+ T lymphocytes have been classified into several lineages, according to their gene expression profiles and their effector responses. Interestingly, recent evidence is showing that many lineages could yield hybrid phenotypes with unique properties and functions. It has been reported that such hybrid lineages might underlie pathologies or may function as effector cells with protection capacities against molecular threats. In this work, we reviewed the characteristics of the hybrid lineages reported in the literature, in order to identify the expression profiles that characterize them and the markers that could be used to identify them. We also review the differentiation cues that elicit their hybrid origin and what is known about their physiological roles.


Subject(s)
CD4-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation
7.
Plant Sci ; 340: 111975, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38181854

ABSTRACT

The epigenetic complex Trithorax (TrxG) regulates gene transcription through post-translational histone modifications and is involved in a wide range of developmental processes. ULTRAPETALA1 (ULT1) is a SAND domain plant-exclusive TrxG protein that regulates the H3K4me3 active mark to counteract PcG repression. ULT1 has been identified to be involved in multiple tissue-specific processes. In the Arabidopsis root, ULT1 is required to maintain the stem cell niche, a role that is independent of the histone methyltransferase ATX1. Here we show the contribution of ULT2 in the maintenance of root stem cell niche. We also analyzed the gene expression in the ult1, ult2, and ult1ult2 mutants, evidencing three ways in which ULT1 and ULT2 regulate gene expression, one of them, where ULT1 or ULT2 regulate specific genes each, another where ULT1 and ULT2 act redundantly, as well as a regulation that requires of ULT1 and ULT2 together, supporting a coregulation, never reported. Furthermore, we also evidenced the participation of ULT1 in transcriptional repression synergically with CLF, a key histone methyltransferase of PcG.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/metabolism , Plant Proteins/metabolism , Histone Methyltransferases/metabolism
8.
Toxics ; 11(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37888721

ABSTRACT

Inducing carotid body anoxia through the administration of cyanide can result in oxygen deprivation. The lack of oxygen activates cellular responses in specific regions of the central nervous system, including the Nucleus Tractus Solitarius, hypothalamus, hippocampus, and amygdala, which are regulated by afferent pathways from chemosensitive receptors. These receptors are modulated by the brain-derived neurotrophic factor receptor TrkB. Oxygen deprivation can cause neuroinflammation in the brain regions that are activated by the afferent pathways from the chemosensitive carotid body. To investigate how microglia, a type of immune cell in the brain, respond to an anoxic environment resulting from the administration of NaCN, we studied the effects of blocking the TrkB receptor on this cell-type response. Male Wistar rats were anesthetized, and a dose of NaCN was injected into their carotid sinus to induce anoxia. Prior to the anoxic stimulus, the rats were given an intracerebroventricular (icv) infusion of either K252a, a TrkB receptor inhibitor, BDNF, or an artificial cerebrospinal fluid (aCSF). After the anoxic stimulus, the rats were perfused with paraformaldehyde, and their brains were processed for microglia immunohistochemistry. The results indicated that the anoxic stimulation caused an increase in the number of reactive microglial cells in the hypothalamic arcuate, basolateral amygdala, and dentate gyrus of the hippocampus. However, the infusion of the K252a TrkB receptor inhibitor prevented microglial activation in these regions.

9.
Proc Natl Acad Sci U S A ; 120(42): e2309616120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824528

ABSTRACT

Biological patterns that emerge during the morphogenesis of multicellular organisms can display high precision at large scales, while at cellular scales, cells exhibit large fluctuations stemming from cell-cell differences in molecular copy numbers also called demographic noise. We study the conflicting interplay between high precision and demographic noise in trichome patterns on the epidermis of wild-type Arabidopsis thaliana leaves, as a two-dimensional model system. We carry out a statistical characterization of these patterns and show that their power spectra display fat tails-a signature compatible with noise-driven stochastic Turing patterns-which are absent in power spectra of patterns driven by deterministic instabilities. We then present a theoretical model that includes demographic noise stemming from birth-death processes of genetic regulators which we study analytically and by stochastic simulations. The model captures the observed experimental features of trichome patterns.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Trichomes/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Leaves/metabolism
10.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628953

ABSTRACT

Light and photoperiod are environmental signals that regulate flowering transition. In plants like Arabidopsis thaliana, this regulation relies on CONSTANS, a transcription factor that is negatively posttranslational regulated by phytochrome B during the morning, while it is stabilized by PHYA and cryptochromes 1/2 at the end of daylight hours. CO induces the expression of FT, whose protein travels from the leaves to the apical meristem, where it binds to FD to regulate some flowering genes. Although PHYB delays flowering, we show that light and PHYB positively regulate XAANTAL1 and other flowering genes in the shoot apices. Also, the genetic data indicate that XAL1 and FD participate in the same signaling pathway in flowering promotion when plants are grown under a long-day photoperiod at 22 °C. By contrast, XAL1 functions independently of FD or PIF4 to induce flowering at higher temperatures (27 °C), even under long days. Furthermore, XAL1 directly binds to FD, SOC1, LFY, and AP1 promoters. Our findings lead us to propose that light and temperature influence the floral network at the meristem level in a partially independent way of the signaling generated from the leaves.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Fever , Meristem/genetics , Phytochrome B , Temperature , Transcription Factors/genetics
11.
Plants (Basel) ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447074

ABSTRACT

Mexico harbors over 50% of maize's genetic diversity in the Americas. Native maize varieties are actively managed by small-scale producers within a diverse array of cultivation systems. Seed lot use, exchange and admixture has consequences for the in situ conservation of such varieties. Here we analyze native maize seed management dynamics from 906 small-scale producers surveyed in three Mexican states: Mexico City, Oaxaca and Chiapas. Furthermore, we analyze how their management practices can relate to transgene presence, which was experimentally documented for maize samples associated with the applied surveys. Through a data mining approach, we investigated which practices might be related with a higher probability of transgene presence. The variables found to have a strong spatial association with transgene presence were: for Mexico City, maize producers with larger parcels; for Oaxaca, producer's age (43-46 years) and the sale of seed; for Chiapas, the use of agricultural machinery and younger producers (37-43 years). Additionally, transgene presence and frequency within the socioeconomic regions of Oaxaca and Chiapas was analyzed. In Oaxaca, higher transgene frequencies occurred in regions where transgene presence had been previously reported. In Chiapas, the border regions with Guatemala as well as a region where reproduction of improved seed takes place, the highest proportion of positive samples were found. A detailed mapping of regional seed markets and seed exchange sites together with deployment of national and local biosecurity measures, could help prevent the further spread of transgenes into native maize varieties, as well as improve conservation efforts.

12.
Front Immunol ; 14: 1014778, 2023.
Article in English | MEDLINE | ID: mdl-37026009

ABSTRACT

Background: Visceral adipose tissue (VAT) is one of the most important sources of proinflammatory molecules in obese people and it conditions the appearance of insulin resistance and diabetes. Thus, understanding the synergies between adipocytes and VAT-resident immune cells is essential for the treatment of insulin resistance and diabetes. Methods: We collected information available on databases and specialized literature to construct regulatory networks of VAT resident cells, such as adipocytes, CD4+ T lymphocytes and macrophages. These networks were used to build stochastic models based on Markov chains to visualize phenotypic changes on VAT resident cells under several physiological contexts, including obesity and diabetes mellitus. Results: Stochastic models showed that in lean people, insulin produces inflammation in adipocytes as a homeostatic mechanism to downregulate glucose intake. However, when the VAT tolerance to inflammation is exceeded, adipocytes lose insulin sensitivity according to severity of the inflammatory condition. Molecularly, insulin resistance is initiated by inflammatory pathways and sustained by intracellular ceramide signaling. Furthermore, our data show that insulin resistance potentiates the effector response of immune cells, which suggests its role in the mechanism of nutrient redirection. Finally, our models show that insulin resistance cannot be inhibited by anti-inflammatory therapies alone. Conclusion: Insulin resistance controls adipocyte glucose intake under homeostatic conditions. However, metabolic alterations such as obesity, enhances insulin resistance in adipocytes, redirecting nutrients to immune cells, permanently sustaining local inflammation in the VAT.


Subject(s)
Insulin Resistance , Humans , Intra-Abdominal Fat , Obesity , Inflammation , Glucose
13.
Genome Biol Evol ; 15(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36582124

ABSTRACT

Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.


Subject(s)
Genome, Plastid , Orchidaceae , Humans , Aged , Phylogeny , Genes, Plant , Plant Proteins/genetics , Orchidaceae/genetics
14.
Front Oncol ; 13: 1304662, 2023.
Article in English | MEDLINE | ID: mdl-38250553

ABSTRACT

Introduction: The decisive key to disease-free survival in B-cell precursor acute lymphoblastic leukemia in children, is the combination of diagnostic timeliness and treatment efficacy, guided by accurate patient risk stratification. Implementation of standardized and high-precision diagnostic/prognostic systems is particularly important in the most marginalized geographic areas in Mexico, where high numbers of the pediatric population resides and the highest relapse and early death rates due to acute leukemias are recorded even in those cases diagnosed as standard risk. Methods: By using a multidimensional and integrated analysis of the immunophenotype of leukemic cells, the immunological context and the tumor microenvironment, this study aim to capture the snapshot of acute leukemia at disease debut of a cohort of Mexican children from vulnerable regions in Puebla, Oaxaca and Tlaxcala and its potential use in risk stratification. Results and discussion: Our findings highlight the existence of a distinct profile of ProB-ALL in children older than 10 years, which is associated with a six-fold increase in the risk of developing measurable residual disease (MRD). Along with the absence of CD34+ seminal cells for normal hematopoiesis, this ProB-ALL subtype exhibited several characteristics related to poor prognosis, including the high expression level of myeloid lineage markers such as MPO and CD33, as well as upregulation of CD19, CD34, CD24, CD20 and nuTdT. In contrast, it showed a trend towards decreased expression of CD9, CD81, CD123, CD13, CD15 and CD21. Of note, the mesenchymal stromal cell compartment constituting their leukemic niche in the bone marrow, displayed characteristics of potential suppressive microenvironment, such as the expression of Gal9 and IDO1, and the absence of the chemokine CXCL11. Accordingly, adaptive immunity components were poorly represented. Taken together, our results suggest, for the first time, that a biologically distinct subtype of ProB-ALL emerges in vulnerable adolescents, with a high risk of developing MRD. Rigorous research on potential enhancing factors, environmental or lifestyle, is crucial for its detection and prevention. The use of the reported profile for early risk stratification is suggested.

15.
Plants (Basel) ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432890

ABSTRACT

Genome-wide association studies (GWAS) have allowed the identification of different loci associated with primary root (PR) growth, and Arabidopsis is an excellent model for these studies. The PR length is controlled by cell proliferation, elongation, and differentiation; however, the specific contribution of proliferation and differentiation in the control of PR growth is still poorly studied. To this end, we analyzed 124 accessions and used a GWAS approach to identify potential causal genomic regions related to four traits: PR length, growth rate, cell proliferation and cell differentiation. Twenty-three genes and five statistically significant SNPs were identified. The SNP with the highest score mapped to the fifth exon of NAC048 and this change makes a missense variant in only 33.3% of the accessions with a large PR, compared with the accessions with a short PR length. Moreover, we detected five more SNPs in this gene and in NAC3 that allow us to discover closely related accessions according to the phylogenetic tree analysis. We also found that the association between genetic variants among the 18 genes with the highest scores in our GWAS and the phenotypic classes into which we divided our accessions are not straightforward and likely follow historical patterns.

16.
Front Plant Sci ; 13: 852047, 2022.
Article in English | MEDLINE | ID: mdl-36017258

ABSTRACT

Post-embryonic plant development is characterized by a period of vegetative growth during which a combination of intrinsic and extrinsic signals triggers the transition to the reproductive phase. To understand how different flowering inducing and repressing signals are associated with phase transitions of the Shoot Apical Meristem (SAM), we incorporated available data into a dynamic gene regulatory network model for Arabidopsis thaliana. This Flowering Transition Gene Regulatory Network (FT-GRN) formally constitutes a dynamic system-level mechanism based on more than three decades of experimental data on flowering. We provide novel experimental data on the regulatory interactions of one of its twenty-three components: a MADS-box transcription factor XAANTAL2 (XAL2). These data complement the information regarding flowering transition under short days and provides an example of the type of questions that can be addressed by the FT-GRN. The resulting FT-GRN is highly connected and integrates developmental, hormonal, and environmental signals that affect developmental transitions at the SAM. The FT-GRN is a dynamic multi-stable Boolean system, with 223 possible initial states, yet it converges into only 32 attractors. The latter are coherent with the expression profiles of the FT-GRN components that have been experimentally described for the developmental stages of the SAM. Furthermore, the attractors are also highly robust to initial states and to simulated perturbations of the interaction functions. The model recovered the meristem phenotypes of previously described single mutants. We also analyzed the attractors landscape that emerges from the postulated FT-GRN, uncovering which set of signals or components are critical for reproductive competence and the time-order transitions observed in the SAM. Finally, in the context of such GRN, the role of XAL2 under short-day conditions could be understood. Therefore, this model constitutes a robust biological module and the first multi-stable, dynamical systems biology mechanism that integrates the genetic flowering pathways to explain SAM phase transitions.

17.
Medicina (Kaunas) ; 58(4)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35454388

ABSTRACT

Background and Objectives: The commissural nucleus of the tractus solitarius (cNTS) not only responds to glucose levels directly, but also receives afferent signals from the liver, and from the carotid chemoreceptors (CChR). In addition, leptin, through its receptors in the cNTS, regulates food intake, body weight, blood glucose levels, and brain glucose retention (BGR). These leptin effects on cNTS are thought to be mediated through the sympathetic-adrenal system. How these different sources of information converging in the NTS regulate blood glucose levels and brain glucose retention remains largely unknown. The goal of the present study was to determine whether the local administration of leptin in cNTS alone, or after local anoxic stimulation using sodium cyanide (NaCN) in the carotid sinus, modifies the expression of leptin Ob-Rb and of c-Fos mRNA. We also investigated how leptin, alone, or in combination with carotid sinus stimulation, affected brain glucose retention. Materials and Methods: The experiments were carried out in anesthetized male Wistar rats artificially ventilated to maintain homeostatic values for pO2, pCO2, and pH. We had four groups: (a) experimental 1, leptin infusion in cNTS and NaCN in the isolated carotid sinus (ICS; n = 10); (b) experimental 2, leptin infusion in cNTS and saline in the ICS (n = 10); (c) control 1, artificial cerebrospinal fluid (aCSF) in cNTS and NaCN in the ICS (n = 10); (d) control 2, aCSF in cNTS and saline in the ICS (n = 10). Results: Leptin in cNTS, preceded by NaCN in the ICS increased BGR and leptin Ob-Rb mRNA receptor expression, with no significant increases in c-Fos mRNA in the NTSc. Conclusions: Leptin in the cNTS enhances brain glucose retention induced by an anoxic stimulus in the carotid chemoreceptors, through an increase in Ob-Rb receptors, without persistent changes in neuronal activation.


Subject(s)
Carotid Body , Leptin , Receptors, Leptin , Solitary Nucleus , Animals , Blood Glucose/metabolism , Carotid Body/metabolism , Glucose/metabolism , Hypoxia , Leptin/metabolism , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Leptin/metabolism , Solitary Nucleus/metabolism
19.
J Exp Bot ; 73(1): 38-49, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34518884

ABSTRACT

Asymmetric cell divisions are essential to generate different cellular lineages. In plants, asymmetric cell divisions regulate the correct formation of the embryo, stomatal cells, apical and root meristems, and lateral roots. Current knowledge of regulation of asymmetric cell divisions suggests that, in addition to the function of key transcription factor networks, epigenetic mechanisms play crucial roles. Therefore, we highlight the importance of epigenetic regulation and chromatin dynamics for integration of signals and specification of cells that undergo asymmetric cell divisions, as well as for cell maintenance and cell fate establishment of both progenitor and daughter cells. We also discuss the polarization and segregation of cell components to ensure correct epigenetic memory or resetting of epigenetic marks during asymmetric cell divisions.


Subject(s)
Asymmetric Cell Division , Epigenesis, Genetic , Cell Differentiation , Cell Lineage , Plant Development/genetics
20.
Plant Physiol ; 188(2): 846-860, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34791452

ABSTRACT

Arabidopsis (Arabidopsis thaliana) primary and lateral roots (LRs) are well suited for 3D and 4D microscopy, and their development provides an ideal system for studying morphogenesis and cell proliferation dynamics. With fast-advancing microscopy techniques used for live-imaging, whole tissue data are increasingly available, yet present the great challenge of analyzing complex interactions within cell populations. We developed a plugin "Live Plant Cell Tracking" (LiPlaCeT) coupled to the publicly available ImageJ image analysis program and generated a pipeline that allows, with the aid of LiPlaCeT, 4D cell tracking and lineage analysis of populations of dividing and growing cells. The LiPlaCeT plugin contains ad hoc ergonomic curating tools, making it very simple to use for manual cell tracking, especially when the signal-to-noise ratio of images is low or variable in time or 3D space and when automated methods may fail. Performing time-lapse experiments and using cell-tracking data extracted with the assistance of LiPlaCeT, we accomplished deep analyses of cell proliferation and clonal relations in the whole developing LR primordia and constructed genealogical trees. We also used cell-tracking data for endodermis cells of the root apical meristem (RAM) and performed automated analyses of cell population dynamics using ParaView software (also publicly available). Using the RAM as an example, we also showed how LiPlaCeT can be used to generate information at the whole-tissue level regarding cell length, cell position, cell growth rate, cell displacement rate, and proliferation activity. The pipeline will be useful in live-imaging studies of roots and other plant organs to understand complex interactions within proliferating and growing cell populations. The plugin includes a step-by-step user manual and a dataset example that are available at https://www.ibt.unam.mx/documentos/diversos/LiPlaCeT.zip.


Subject(s)
Arabidopsis/physiology , Cell Proliferation , Cell Tracking/instrumentation , Plant Cells/physiology , Plant Development , Arabidopsis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...