Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4150, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755164

ABSTRACT

Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.


Subject(s)
Amyloid , Biofilms , Caenorhabditis elegans , Dopaminergic Neurons , Gastrointestinal Microbiome , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Humans , Biofilms/growth & development , Amyloid/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Parkinson Disease/metabolism , Parkinson Disease/microbiology , Parkinson Disease/pathology , Mice , Dopaminergic Neurons/metabolism , Autophagy , Neurodegenerative Diseases/metabolism , Mice, Inbred C57BL , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Brain/metabolism , Brain/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathology
2.
Toxins (Basel) ; 16(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38787065

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established for its quantification in mice, the primary animal model in this field, that include pivotal tissues in this area of research, such as the intestine and brain. To address this gap, we developed and validated a highly sensitive, rapid, and simple method using HPLC-FLD for OTA determination in mice tissues (kidney, liver, brain, and intestine) as well as plasma samples. The method was rigorously validated for selectivity, linearity, accuracy, precision, recovery, dilution integrity, carry-over effect, stability, and robustness, meeting the validation criteria outlined by FDA and EMA guidelines. Furthermore, the described method enables the quantification of OTA in each individual sample using minimal tissue mass while maintaining excellent recovery values. The applicability of the method was demonstrated in a repeated low-dose OTA study in Balb/c mice, which, together with the inclusion of relevant and less common tissues in the validation process, underscore its suitability for neurodegeneration-related research.


Subject(s)
Mice, Inbred BALB C , Ochratoxins , Ochratoxins/analysis , Ochratoxins/blood , Animals , Chromatography, High Pressure Liquid/methods , Neurodegenerative Diseases , Mice , Reproducibility of Results , Male , Female , Tissue Distribution , Spectrometry, Fluorescence , Kidney/metabolism
3.
Pharmaceutics ; 15(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111717

ABSTRACT

The development of effective disease-modifying therapies to halt Parkinson's disease (PD) progression is required. In a subtype of PD patients, alpha-synuclein pathology may start in the enteric nervous system (ENS) or autonomic peripheral nervous system. Consequently, strategies to decrease the expression of alpha-synuclein in the ENS will be an approach to prevent PD progression at pre-clinical stages in these patients. In the present study, we aimed to assess if anti-alpha-synuclein shRNA-minicircles (MC) delivered by RVG-extracellular vesicles (RVG-EV) could downregulate alpha-synuclein expression in the intestine and spinal cord. RVG-EV containing shRNA-MC were injected intravenously in a PD mouse model, and alpha-synuclein downregulation was evaluated by qPCR and Western blot in the cord and distal intestine. Our results confirmed the downregulation of alpha-synuclein in the intestine and spinal cord of mice treated with the therapy. We demonstrated that the treatment with anti-alpha-synuclein shRNA-MC RVG-EV after the development of pathology is effective to downregulate alpha-synuclein expression in the brain as well as in the intestine and spinal cord. Moreover, we confirmed that a multidose treatment is necessary to maintain downregulation for long-term treatments. Our results support the potential use of anti-alpha-synuclein shRNA-MC RVG-EV as a therapy to delay or halt PD pathology progression.

4.
Int J Infect Dis ; 123: 145-156, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35995313

ABSTRACT

OBJECTIVES: Mask usage has increased over the last few years due to the COVID-19 pandemic, resulting in a mask shortage. Furthermore, their prolonged use causes skin problems related to bacterial overgrowth. To overcome these problems, atmospheric pressure cold plasma was studied as an alternative technology for mask disinfection. METHODS: Different microorganisms (Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp.), different gases (nitrogen, argon, and air), plasma power (90-300 W), and treatment times (45 seconds to 5 minutes) were tested. RESULTS: The best atmospheric pressure cold plasma treatment was the one generated by nitrogen gas at 300 W and 1.5 minutes. Testing of breathing and filtering performance and microscopic and visual analysis after one and five plasma treatment cycles, highlighted that these treatments did not affect the morphology or functional capacity of the masks. CONCLUSION: Considering the above, we strongly believe that atmospheric pressure cold plasma could be an inexpensive, eco-friendly, and sustainable mask disinfection technology enabling their reusability and solving mask shortage.


Subject(s)
COVID-19 , Plasma Gases , Argon , Atmospheric Pressure , COVID-19/prevention & control , Disinfection/methods , Escherichia coli , Humans , Nitrogen , Pandemics
5.
Neurobiol Dis ; 166: 105651, 2022 05.
Article in English | MEDLINE | ID: mdl-35124191

ABSTRACT

Although the factors contributing to the pathogenesis of neurodegenerative diseases remain elusive, endolysosomal pathway is emerging as a key player in the pathogenesis of neurodegenerative diseases. The link between endolysosomal dysfunction and neurodegeneration is supported by genetic studies identifying disease mutations in genes controlling endolysosomal function. Growing evidence suggests that endolysosomal dysfunction affect the production, secretion and content of exosomes. Current data suggests that exosomes play a key role in Parkinson's disease (PD) and Alzheimer's disease (AD) progression, interfering with the transmission of pathological proteins or neuroinflammatory factors related to neurodegenerative diseases. This review summarizes recent advances in the role of endolysosomal dysfunction in the spreading of pathological proteins mediated by exosomes in the two most common neurodegenerative diseases, AD and PD.


Subject(s)
Exosomes , Neurodegenerative Diseases , Parkinson Disease , Endosomes/metabolism , Exosomes/metabolism , Humans , Lysosomes/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism
6.
Neuroscientist ; 28(2): 180-193, 2022 04.
Article in English | MEDLINE | ID: mdl-33530851

ABSTRACT

Accumulating evidence suggests that exosomes play a key role in Parkinson's disease (PD). Exosomes may contribute to the PD progression facilitating the spread of pathological alpha-synuclein or activating immune cells. Glial cells also release exosomes, and transmission of exosomes derived from activated glial cells containing inflammatory mediators may contribute to the propagation of the neuroinflammatory response. Glia-to-neuron transmission of exosomes containing alpha-synuclein may contribute to alpha-synuclein propagation and neurodegeneration. Additionally, miRNAs can be transmitted among cells via exosomes inducing changes in the genetic program of the target cell contributing to PD progression. Exosomes also represent a promising drug delivery system. The brain is a difficult target for drugs of all classes because the blood-brain barrier excludes most macromolecular drugs. One of the major challenges is the development of vehicles for robust delivery to the brain. Targeted exosomes may have the potential for delivering therapeutic agents, including proteins and gene therapy molecules, into the brain. This review summarizes recent advances in the role of exosomes in PD pathology progression and their potential use as drug delivery system for PD treatment, the two faces of the exosomes in PD.


Subject(s)
Exosomes , MicroRNAs , Parkinson Disease , Brain/metabolism , Exosomes/metabolism , Exosomes/pathology , Humans , MicroRNAs/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism
7.
Front Aging Neurosci ; 13: 698979, 2021.
Article in English | MEDLINE | ID: mdl-34744683

ABSTRACT

Proteinaceous inclusions, called Lewy bodies (LBs), are used as a pathological hallmark for Parkinson's disease (PD). Recent studies suggested a prion-like spreading mechanism for α-synucleinopathy where early neuropathological deposits occur, among others, in the olfactory bulb (OB) and amygdala. LBs contain insoluble α-synuclein and many other ubiquitinated proteins, suggesting a role of protein degradation system failure in PD pathogenesis. Therefore, we wanted to study the effects of a proteasomal inhibitor, lactacystin, on the aggregability and transmissibility of α-synuclein in the OB and amygdala. We performed injections of lactacystin in the OB and amygdala of wild-type mice. Motor behavior, markers of neuroinflammation, α-synuclein, and dopaminergic integrity were assessed by immunohistochemistry. Overall, there were no differences in the number of neurons and α-synuclein expression in these regions following injection of lactacystin into either the OB or amygdala. Microglial and astroglial labeling appeared to be correlated with surgery-induced inflammation or local effects of lactacystin. Consistent with the behavior and pathological findings, there was no loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. Our data showed that long-term lactacystin injections in extra nigrostriatal regions may not mimic spreading aspects of PD and reinforce the special vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc).

8.
Front Immunol ; 12: 700921, 2021.
Article in English | MEDLINE | ID: mdl-34539631

ABSTRACT

Cytokines, chemokines and growth factors present different expression profiles related to the prognosis of COVID-19. We analyzed clinical parameters and assessed the expression of these biomarkers in patients with different disease severity in a hospitalized Peruvian cohort to determine those associated with worse prognosis. We measured anti-spike IgG antibodies by ELISA and 30 cytokines by quantitative suspension array technology in 123 sera samples. We analyzed differences between patients with moderate, severe and fatal COVID-19 by logistic regression at baseline and in longitudinal samples. Significant differences were found among the clinical parameters: hemoglobin, neutrophils, lymphocytes and C-reactive protein (CRP), creatinine and D-dimer levels. Higher anti-spike IgG antibody concentrations were associated to fatal patient outcomes. At hospitalization, IL-10, IL-6, MIP-1α, GM-CSF, MCP-1, IL-15, IL-5, IL1RA, TNFα and IL-8 levels were already increased in fatal patients´ group. Meanwhile, multivariable analysis revealed that increased GM-CSF, MCP-1, IL-15, and IL-8 values were associated with fatal outcomes. Moreover, longitudinal analysis identified IL-6 and MCP-1 as the main risk factors related to mortality in hospitalized COVID-19 patients. In this Peruvian cohort we identified and validated biomarkers related to COVID-19 outcomes. Further studies are needed to identify novel criteria for stratification of SARS-CoV-2 infected patients at hospital entry. Background: In the most severe forms of SARS-CoV-2 infection, large numbers of innate and adaptive immune cells become activated and begin to produce pro-inflammatory cytokines, establishing an exacerbated feedback loop of inflammation. Methods: A total of 55 patients with laboratory-confirmed COVID-19 admitted to the Hospital Nacional Guillermo Almenara Irigoyen in Lima, Peru were enrolled during August-October 2020. Of these, 21 had moderate disease, 24 severe diseases and 10 died. We measured 30 cytokines and chemokines by quantitative suspension array technology and anti-spike IgG antibodies using a commercial ELISA. We evaluated these parameters in peripheral blood every 2-5 days until patient discharge or death. Patient information and clinical parameters related were obtained from the respective clinical histories. Results: The frequency of obesity differed among the 3 groups, being most frequent in patients who died. There were also significant differences in clinical parameters: hemoglobin, segmented neutrophils, lymphocytes,C-reactive protein, creatinine and D-dimer levels. Greater anti-spike IgG antibody concentrations were associated to fatal outcomes. In univariate analyses, higher baseline concentrations of IL-6, MIP-1α, GM-CSF, MCP-1, IL-15, IL-5, IL1RA, TNFα, IL-8 and IL-12p70 correlated with severity, while multivariable analysis showed that increased concentrations in 4 biomarkers (GM-CSF, MCP-1, IL-15, IL-8) were associated with fatal outcomes. Longitudinal analysis showed IL-6 (hazard ratio [HR] 6.81, 95% confidence interval [CI] 1.6-28.7) and MCP-1 (HR 4.61, 95%CI 1.1-19.1) to be related to mortality in hospitalized COVID-19 patients. Conclusions: Cytokine, chemokine and growth factor profiles were identified and validated related to severity and outcomes of COVID-19. Our findings may be useful to identify novel criteria for COVID-19 patient stratification at hospital entry.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/mortality , Cytokines/blood , Antibodies, Viral/immunology , Biomarkers/blood , COVID-19/immunology , Comorbidity , Enzyme-Linked Immunosorbent Assay , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , Obesity/epidemiology , Peru/epidemiology , Prognosis , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
9.
Toxins (Basel) ; 13(7)2021 07 10.
Article in English | MEDLINE | ID: mdl-34357949

ABSTRACT

Exposure to environmental contaminants might play an important role in neurodegenerative disease pathogenesis, such as Parkinson´s disease (PD) and Alzheimer´s disease (AD). For the first time in Spain, the plasmatic levels of 19 mycotoxins from patients diagnosed with a neurodegenerative disease (44 PD and 24 AD) and from their healthy companions (25) from La Rioja region were analyzed. The studied mycotoxins were aflatoxins B1, B2, G1, G2 and M1, T-2 and HT-2, ochratoxins A (OTA) and B (OTB), zearalenone, sterigmatocystin (STER), nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deepoxy-deoxynivalenol, neosolaniol, diacetoxyscirpenol and fusarenon-X. Samples were analyzed by LC-MS/MS before and after treatment with ß-glucuronidase/arylsulfatase in order to detect potential metabolites. Only OTA, OTB and STER were detected in the samples. OTA was present before (77% of the samples) and after (89%) the enzymatic treatment, while OTB was only detectable before (13%). Statistically significant differences in OTA between healthy companions and patients were observed but the observed differences might seem more related to gender (OTA levels higher in men, p-value = 0.0014) than the disease itself. STER appeared only after enzymatic treatment (88%). Statistical analysis on STER, showed distributions always different between healthy controls and patients (patients' group > controls, p-value < 0.0001). Surprisingly, STER levels weakly correlated positively with age in women (rho = 0.3384), while OTA correlation showed a decrease of levels with age especially in the men with PD (rho = -0.4643).


Subject(s)
Alzheimer Disease/blood , Biological Monitoring , Mycotoxins/blood , Parkinson Disease/blood , Alzheimer Disease/microbiology , Chromatography, Liquid , Humans , Mycotoxins/analysis , Mycotoxins/metabolism , Neurodegenerative Diseases , Ochratoxins , Parkinson Disease/metabolism , Sterigmatocystin/analysis , Tandem Mass Spectrometry , Trichothecenes , Zearalenone/analysis
10.
Methods Mol Biol ; 2282: 395-401, 2021.
Article in English | MEDLINE | ID: mdl-33928586

ABSTRACT

Exosomes are membrane-bound vesicles (40-100 nm) of endocytic origin released by numerous cell types that act as natural carriers of mRNA, microRNA, and proteins between cells. We developed a new system that uses intravenous injection of modified exosomes for siRNA delivery into the brain. Here we describe the generation of unmodified and modified exosomes, which specifically target the brain, and the method to load siRNA into the exosomes.


Subject(s)
Exosomes/genetics , RNA Interference , RNA, Small Interfering/genetics , Transfection , Animals , Brain/metabolism , Cells, Cultured , Exosomes/metabolism , Humans , Mice , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Research Design , Workflow
11.
Food Chem Toxicol ; 152: 112164, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33819549

ABSTRACT

Some epidemiological studies with different levels of evidence have pointed to a higher risk of Parkinson's disease (PD) after exposure to environmental toxicants. A practically unexplored potential etiological factor is a group of naturally-occurring fungal secondary metabolites called mycotoxins. The mycotoxin ochratoxin A (OTA) has been reported to be neurotoxic in mice. To further identify if OTA exposure could have a role in PD pathology, Balb/c mice were orally treated with OTA (0.21, 0.5 mg/kg bw) four weeks and left for six months under normal diet. Effects of OTA on the onset, progression of alpha-synuclein pathology and development of motor deficits were evaluated. Immunohistochemical and biochemical analyses showed that oral subchronic OTA treatment induced loss of striatal dopaminergic innervation and dopaminergic cell dysfunction responsible for motor impairments. Phosphorylated alpha-synuclein levels were increased in gut and brain. LAMP-2A protein was decreased in tissues showing alpha-synuclein pathology. Cell cultures exposed to OTA exhibited decreased LAMP-2A protein, impairment of chaperone-mediated autophagy and decreased alpha-synuclein turnover which was linked to miRNAs deregulation, all reminiscent of PD. These results support the hypothesis that oral exposure to low OTA doses in mice can lead to biochemical and pathological changes reported in PD.


Subject(s)
Mycotoxins/toxicity , Ochratoxins/toxicity , Parkinson Disease/etiology , Parkinson Disease/metabolism , Administration, Oral , Animals , Dopaminergic Neurons/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Lysosomal-Associated Membrane Protein 2/metabolism , Male , Mesencephalon/drug effects , Mesencephalon/metabolism , Mesencephalon/pathology , Mice, Inbred BALB C , MicroRNAs/metabolism , Mycotoxins/administration & dosage , Ochratoxins/administration & dosage , Parkinson Disease/pathology , Pars Compacta/drug effects , Pars Compacta/metabolism , Pars Compacta/pathology , Phosphorylation/drug effects , Time Factors , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
12.
Toxins (Basel) ; 13(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33535685

ABSTRACT

Gut microbiota plays crucial roles in maintaining host health. External factors, such as diet, medicines, and environmental toxins, influence the composition of gut microbiota. Ochratoxin A (OTA) is one of the most prevalent and relevant mycotoxins and is a highly abundant food and animal feed contaminant. In the present study, we aimed to investigate OTA gut microbiome toxicity in mice sub-chronically exposed to low doses of OTA (0.21, 0.5, and 1.5 mg/kg body weight) by daily oral gavage for 28 days. Fecal microbiota from control and OTA-treated mice was analyzed using 16S ribosomal RNA (rRNA) gene sequencing followed by metagenomics. OTA exposure caused marked changes in gut microbial community structure, including the decrease in the diversity of fecal microbiota and the relative abundance of Firmicutes, as well as the increase in the relative abundance of Bacteroidetes at the phylum level. At the family level, six bacterial families (unclassified Bacteroidales, Porphyromonadaceae, unclassified Cyanobacteria, Streptococcaceae, Enterobacteriaceae, Ruminococcaceae) were significantly altered by OTA exposure. Interestingly, OTA-induced changes were observed in the lower-dose OTA groups, while high-dose OTA group microbiota was similar to control group. Our results demonstrated that sub-chronic exposure at low doses of OTA alters the structure and diversity of the gut microbial community.


Subject(s)
Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Ochratoxins/toxicity , Administration, Oral , Animals , Bacteria/growth & development , Bacteria/metabolism , Dysbiosis , Feces/microbiology , Male , Mice, Inbred BALB C , Ochratoxins/administration & dosage , Ribotyping , Time Factors , Toxicity Tests, Subchronic
13.
Neurosci Res ; 170: 330-340, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33316306

ABSTRACT

Neuroinflammation is increasingly recognized as an important feature in the pathogenesis of Parkinson's disease (PD). However, it remains unclear whether neuroinflammation contributes to nigral degeneration in PD or is merely a secondary marker of neurodegeneration. We aimed to investigate the temporal relationship between synucleopathy, neuroinflammation and nigrostriatal degeneration in a mouse model of PD. Mice received unilateral intrastriatal injection of alpha-synuclein pre-formed fibrils, alpha-synuclein monomer or vehicle and were sacrificed at 15, 30 and 90 days post-injection. Intrastriatal inoculation of alpha-synuclein fibrils led to significant alpha-synuclein aggregation in the substantia nigra peaking at 30 days after injection while the significant increase in Iba-1 cells, GFAP cells and IL-1ß expression peaked earlier at 15 days. At 90 days, the striatal dopaminergic denervation was associated with astroglial activation. Alpha-synuclein monomer did not result in long-term glia activation or increase in inflammatory markers. The spread of alpha-synuclein aggregates into the cortex was not associated with any changes to neuroinflammatory markers. Our results demonstrate that in the substantia nigra glial activation is an early event that precedes alpha-synuclein inclusion formation, suggesting neuroinflammation could play an important early role in the pathogenesis of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Mice , Substantia Nigra/metabolism , alpha-Synuclein/metabolism
14.
Sci Rep ; 10(1): 11667, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669597

ABSTRACT

Pseudomonas is a ubiquitous genus that also causes human, animal and plant diseases. Most studies have focused on clinical P. aeruginosa strains from humans, but they are scarce on animal strains. This study was aimed to determine the occurrence of Pseudomonas spp. among faecal samples of healthy animals, and to analyse their antimicrobial resistance, and pathogenicity. Among 704 animal faecal samples analysed, 133 Pseudomonas spp. isolates (23 species) were recovered from 46 samples (6.5%), and classified in 75 different PFGE patterns. Low antimicrobial resistance levels were found, being the highest to aztreonam (50.3%). Five sequence-types (ST1648, ST1711, ST2096, ST2194, ST2252), two serotypes (O:3, O:6), and three virulotypes (analysing 15 virulence and quorum-sensing genes) were observed among the 9 P. aeruginosa strains. Type-3-Secretion System genes were absent in the six O:3-serotype strains that additionally showed high cytotoxicity and produced higher biofilm biomass, phenazine pigments and motility than PAO1 control strain. In these six strains, the exlAB locus, and other virulence genotypes (e.g. RGP69 pathogenicity island) exclusive of PA7 outliers were detected by whole genome sequencing. This is the first description of the presence of the ExlA exolysin in P. aeruginosa from healthy animals, highlighting their pathological importance.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Pseudomonas/drug effects , Pseudomonas/pathogenicity , Virulence Factors/genetics , Animals , Animals, Domestic/microbiology , Asymptomatic Diseases , Bacterial Proteins/metabolism , Bacterial Typing Techniques , Cats , Deer/microbiology , Dogs , Ducks/microbiology , Electrophoresis, Gel, Pulsed-Field , Feces/microbiology , Humans , Pets/microbiology , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Sheep, Domestic/microbiology , Spain/epidemiology , Sus scrofa/microbiology , Ticks/microbiology , Virulence Factors/metabolism , Whole Genome Sequencing
15.
Mol Ther ; 27(12): 2111-2122, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31501034

ABSTRACT

The development of new therapies to slow down or halt the progression of Parkinson's disease is a health care priority. A key pathological feature is the presence of alpha-synuclein aggregates, and there is increasing evidence that alpha-synuclein propagation plays a central role in disease progression. Consequently, the downregulation of alpha-synuclein is a potential therapeutic target. As a chronic disease, the ideal treatment will be minimally invasive and effective in the long-term. Knockdown of gene expression has clear potential, and siRNAs specific to alpha-synuclein have been designed; however, the efficacy of siRNA treatment is limited by its short-term efficacy. To combat this, we designed shRNA minicircles (shRNA-MCs), with the potential for prolonged effectiveness, and used RVG-exosomes as the vehicle for specific delivery into the brain. We optimized this system using transgenic mice expressing GFP and demonstrated its ability to downregulate GFP protein expression in the brain for up to 6 weeks. RVG-exosomes were used to deliver anti-alpha-synuclein shRNA-MC therapy to the alpha-synuclein preformed-fibril-induced model of parkinsonism. This therapy decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons, and improved the clinical symptoms. Our results confirm the therapeutic potential of shRNA-MCs delivered by RVG-exosomes for long-term treatment of neurodegenerative diseases.


Subject(s)
Brain/metabolism , Disease Models, Animal , Drug Delivery Systems , Exosomes/genetics , Parkinson Disease/therapy , RNA, Small Interfering/genetics , alpha-Synuclein/administration & dosage , Animals , Gene Expression Regulation , Genetic Therapy , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/pathology , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/genetics
17.
Hum Mol Genet ; 26(20): 4028-4041, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29016861

ABSTRACT

DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson's disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease.


Subject(s)
Catecholamines/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Brain/metabolism , Cell Line, Tumor , Dopamine/metabolism , Homeostasis , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Parkinson Disease/genetics , Parkinson Disease/metabolism
18.
Sci Rep ; 7(1): 4290, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28655914

ABSTRACT

IGF1R (Insulin-like Growth Factor 1 Receptor) is a tyrosine kinase with pleiotropic cellular functions. IGF activity maintains human lung homeostasis and is implicated in pulmonary diseases such as cancer, ARDS, COPD, asthma and fibrosis. Here we report that lung transcriptome analysis in mice with a postnatally-induced Igf1r gene deletion showed differentially expressed genes with potentially protective roles related to epigenetics, redox and oxidative stress. After bleomycin-induced lung injury, IGF1R-deficient mice demonstrated improved survival within a week. Three days post injury, IGF1R-deficient lungs displayed changes in expression of IGF system-related genes and reduced vascular fragility and permeability. Mutant lungs presented reduced inflamed area, down-regulation of pro-inflammatory markers and up-regulation of resolution indicators. Decreased inflammatory cell presence in BALF was reflected in diminished lung infiltration mainly affecting neutrophils, also corroborated by reduced neutrophil numbers in bone marrow, as well as reduced lymphocyte and alveolar macrophage counts. Additionally, increased SFTPC expression together with hindered HIF1A expression and augmented levels of Gpx8 indicate that IGF1R deficiency protects against alveolar damage. These findings identify IGF1R as an important player in murine acute lung inflammation, suggesting that targeting IGF1R may counteract the inflammatory component of many lung diseases.


Subject(s)
Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Bleomycin/adverse effects , Inflammation/etiology , Inflammation/metabolism , Receptor, IGF Type 1/deficiency , Acute Lung Injury/pathology , Animals , Biomarkers , Capillary Permeability , Cell Proliferation , Disease Models, Animal , Gene Expression , Gene Expression Profiling , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Mice, Transgenic , Mutation
20.
J Extracell Vesicles ; 4: 26316, 2015.
Article in English | MEDLINE | ID: mdl-25899407

ABSTRACT

Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs) derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs.

SELECTION OF CITATIONS
SEARCH DETAIL
...