Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Blood Marrow Transplant ; 26(4): 615-624, 2020 04.
Article in English | MEDLINE | ID: mdl-31756538

ABSTRACT

Polyphenols are a group of chemical substances found in plants, with immunomodulatory, antiproliferative, and anti-inflammatory properties that might be useful in the prophylaxis and treatment of graft-versus-host disease (GVHD). Polyphenolic extract (PE) obtained from extra virgin olive oil (EVOO) decreased the activation and proliferation of activated T cells. In addition, a decreased production of proinflammatory cytokines was observed upon exposure to PE. Western blot assays showed a marked inhibition of Akt phosphorylation and nuclear translocation of NF-κB in activated T cells. In a murine model of acute GVHD, we observed that mice that received a diet supplemented in PE (600 ppm) presented a higher survival rate and lower risk of developing GVHD when compared with the group that received a control diet. Histopathologic examination showed a significantly lower gut involvement in mice receiving PE, with a decrease in proinflammatory cytokines (IL-2, IL-17, and TNF-α) in serum and the reestablishment of butyrate concentration in the gut. In conclusion, PE obtained from EVOO exerted a potent immunomodulatory effect, reducing the activation and proliferation of activated T cells and the production of proinflammatory cytokines. In a murine model of acute GVHD, a PE-supplemented diet reduced the incidence and severity of the disease and increased survival after transplantation.


Subject(s)
Graft vs Host Disease , Animals , Disease Models, Animal , Graft vs Host Disease/prevention & control , Mice , NF-kappa B , Olive Oil , Plant Extracts
2.
Int J Cancer ; 140(3): 674-685, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27778331

ABSTRACT

Although hematopoietic and immune system show high levels of the cannabinoid receptor CB2, the potential effect of cannabinoids on hematologic malignancies has been poorly determined. Here we have investigated their anti-tumor effect in multiple myeloma (MM). We demonstrate that cannabinoids induce a selective apoptosis in MM cell lines and in primary plasma cells of MM patients, while sparing normal cells from healthy donors, including hematopoietic stem cells. This effect was mediated by caspase activation, mainly caspase-2, and was partially prevented by a pan-caspase inhibitor. Their pro-apoptotic effect was correlated with an increased expression of Bax and Bak, a decrease of Bcl-xL and Mcl-1, a biphasic response of Akt/PKB and an increase in the levels of ceramide in MM cells. Inhibition of ceramide synthesis partially prevented apoptosis, indicating that these sphingolipids play a key role in the pro-apoptotic effect of cannabinoids in MM cells. Remarkably, blockage of the CB2 receptor also inhibited cannabinoid-induced apoptosis. Cannabinoid derivative WIN-55 enhanced the anti-myeloma activity of dexamethasone and melphalan overcoming resistance to melphalan in vitro. Finally, administration of cannabinoid WIN-55 to plasmacytoma-bearing mice significantly suppressed tumor growth in vivo. Together, our data suggest that cannabinoids may be considered as potential therapeutic agents in the treatment of MM.


Subject(s)
Antineoplastic Agents/pharmacology , Cannabinoids/pharmacology , Multiple Myeloma/drug therapy , Animals , Apoptosis/drug effects , Caspase 2/metabolism , Cell Line, Tumor , Ceramides/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction/drug effects , Sphingolipids/metabolism , bcl-X Protein/metabolism
3.
Am J Cancer Res ; 5(1): 386-95, 2015.
Article in English | MEDLINE | ID: mdl-25628947

ABSTRACT

Memory B cells (MBCs) remain in a quiescent state for years, expressing pro-survival and anti-apoptotic factors while repressing cell proliferation and activation genes. During their differentiation into plasma cells (PCs), their expression pattern is reversed, with a higher expression of genes related to cell proliferation and activation, and a lower expression of pro-survival genes. To determine whether myelomatous PCs (mPCs) share characteristics with normal PCs and MBCs and to identify genes involved in the pathophysiology of multiple myeloma (MM), we compared gene expression patterns in these three cell sub-types. We observed that mPCs had features intermediate between those of MBCs and normal PCs, and identified 3455 genes differentially expressed in mPCs relative to normal PCs but with a similar expression pattern to that in MBCs. Most of these genes are involved in cell death and survival, cell growth and proliferation and protein synthesis. According to our findings, mPCs have a gene expression pattern closer to a MBC than a PC with a high expression of genes involved in cell survival. These genes should be physiologically inactivated in the transit from MBC to PC, but remain overexpressed in mPCs and thus may play a role in the pathophysiology of the disease.

4.
Immunology ; 2014 Sep 06.
Article in English | MEDLINE | ID: mdl-25196729

ABSTRACT

Memory B cells (MBCs) have a very long life-span as compared to naïve B cells (NBCs), remaining viable for years. It could predispose them to suffer misbalances in the gene expression pattern at the long term, which might be involved in the development of age-related B-cell disorders. In order to identify genes whose expression might change during life, we analyzed the gene expression patterns of CD27- NBCs versus CD27+ MBCs in young and old subjects. Using microarray assays we observed that the expression pattern of CD27- NBCs versus CD27+ MBCs is significantly different. Furthermore, in order to evaluate the age effect, we compared the gene expression pattern of young versus aged subjects in both cell populations. Interestingly, we did not find significant differences in the CD27- NBC population between young and aged individuals, whereas we found 925 genes differentially expressed in CD27+ MBCs. Among these genes, 193 were also differentially expressed in CD27+ MBCs as compared to CD27- NBCs, most of them involved in cell survival, cell growth and proliferation, cellular development and gene expression. We conclude that gene expression profiles of CD27- NBCs and CD27+ MBCs are different. Moreover, whereas the gene expression pattern of CD27+ MBCs varies with age, the same does not happen in CD27- NBCs. This suggests that MBCs undergo time-dependent changes which could underlie a higher susceptibility to dysfunction with age. This article is protected by copyright. All rights reserved.

5.
Biol Blood Marrow Transplant ; 20(5): 630-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24462744

ABSTRACT

Hematopoietic progenitor cells (HPCs) from granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (G-PB), bone marrow (BM), or umbilical cord blood (CB) have differing biological properties and differing kinetics of engraftment post-transplantation, which might be explained, at least in part, by differing gene and miRNA expression patterns. To assess the differences in gene and miRNA expression, we analyzed whole genome expression profiles as well as the expression of 384 miRNAs in CD34(+) cells isolated from 18 healthy individuals (6 individuals per subtype of HPC source). We identified 43 genes and 36 miRNAs differentially expressed in the various CD34(+) cell sources. We observed that CD34(+) cells from CB and BM showed similar gene and miRNA expression profiles, whereas CD34(+) cells from G-PB had a very different expression pattern. Remarkably, 20 of the differentially expressed genes are targets of the differentially expressed miRNAs. Of note, the majority of genes differentially expressed in CD34(+) cells from G-PB are involved in cell cycle regulation, promoting the process of proliferation, survival, hematopoiesis, and cell signaling, and are targets of overexpressed and underexpressed miRNAs in CD34(+) cells from the same source. These data suggest significant differences in gene and miRNA expression among the various HPC sources used in transplantation. We hypothesize that the differentially expressed genes and miRNAs involved in cell cycle and proliferation might explain the differing kinetics of engraftment observed after transplantation of hematopoietic stem cells obtained from these different sources.


Subject(s)
Bone Marrow Cells/metabolism , Fetal Blood/metabolism , Gene Expression Regulation , Genome, Human , Hematopoietic Stem Cells/metabolism , MicroRNAs/genetics , Antigens, CD34/genetics , Antigens, CD34/metabolism , Bone Marrow Cells/cytology , Cell Cycle/genetics , Cell Proliferation , Fetal Blood/cytology , Gene Expression Profiling , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/cytology , Humans , MicroRNAs/metabolism , Signal Transduction
6.
Haematologica ; 99(2): 243-51, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24056818

ABSTRACT

Granulocyte colony-stimulating factor is the most commonly used cytokine for the mobilization of hematopoietic progenitor cells from healthy donors for allogeneic stem cell transplantation. Although the administration of this cytokine is considered safe, knowledge about its long-term effects, especially in hematopoietic progenitor cells, is limited. On this background, the aim of our study was to analyze whether or not granulocyte colony-stimulating factor induces changes in gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors, and to determine whether or not these changes persist in the long-term. For this purpose, we analyzed the whole genome expression profile and the expression of 384 microRNA in CD34(+) cells isolated from peripheral blood of six healthy donors, before mobilization and at 5, 30 and 365 days after mobilization with granulocyte colony-stimulating factor. Six microRNA were differentially expressed at all time points analyzed after mobilization treatment as compared to the expression in samples obtained before exposure to the drug. In addition, 2424 genes were also differentially expressed for at least 1 year after mobilization. Of interest, 109 of these genes are targets of the differentially expressed microRNA also identified in this study. These data strongly suggest that granulocyte colony-stimulating factor modifies gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors. Remarkably, some changes are present from early time-points and persist for at least 1 year after exposure to the drug. This effect on hematopoietic progenitor cells has not been previously reported.


Subject(s)
Antigens, CD34 , Blood Donors , Gene Expression Regulation/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/metabolism , MicroRNAs/biosynthesis , Adult , Female , Gene Expression Profiling , Genome-Wide Association Study , Hematopoietic Stem Cells/cytology , Humans , Male , Time Factors
7.
Cytotherapy ; 15(6): 673-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23522868

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are multipotent stem cells with immunosuppressive properties. Nevertheless, it has been previously reported that MSCs might also trigger the immune response. We studied whether MSCs may act as carriers, capturing antigens that can be endocytosed by antigen-presenting cells later on. METHODS: We measured the cellular uptake of mannose receptor-mediated fluid phase macropinocytosis, assessed as cellular uptake of fluorescein isothiocyanate-dextran, and PKH-67-labeled cell lysates as a surrogate marker for antigen capture among dendritic cells (DCs, positive control), T lymphocytes (negative control) and MSCs. RESULTS: All experiments confirmed that MCSs displayed pinocytic and endocytic capacities, which were lower than those observed for DCs but significantly higher than those observed for T cells. We also demonstrated that MSCs release previously endocytosed antigens, which subsequently can be captured by DCs. CONCLUSIONS: MSCs have the ability to capture and release antigens.


Subject(s)
Endocytosis , HLA-D Antigens/metabolism , Mesenchymal Stem Cells/cytology , Pinocytosis , Antigen-Presenting Cells/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , HLA-D Antigens/immunology , Humans , Immunosuppressive Agents , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Mannose Receptor , Mannose-Binding Lectins/immunology , Mannose-Binding Lectins/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Multipotent Stem Cells , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...