Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 260(5): 1257-1269, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36877382

ABSTRACT

The modulation of plant growth and development through reactive oxygen species (ROS) is a hallmark during the interactions with microorganisms, but how fungi and their molecules influence endogenous ROS production in the root remains unknown. In this report, we correlated the biostimulant effect of Trichoderma atroviride with Arabidopsis root development via ROS signaling. T. atroviride enhanced ROS accumulation in primary root tips, lateral root primordia, and emerged lateral roots as revealed by total ROS imaging through the fluorescent probe H2DCF-DA and NBT detection. Acidification of the substrate and emission of the volatile organic compound 6-pentyl-2H-pyran-2-one appear to be major factors by which the fungus triggers ROS accumulation. Besides, the disruption of plant NADPH oxidases, also known as respiratory burst oxidase homologs (RBOHs) including ROBHA, RBOHD, but mainly RBOHE, impaired root and shoot fresh weight and the root branching enhanced by the fungus in vitro. RbohE mutant plants displayed poor lateral root proliferation and lower superoxide levels than wild-type seedlings in both primary and lateral roots, indicating a role for this enzyme for T. atroviride-induced root branching. These data shed light on the roles of ROS as messengers for plant growth and root architectural changes during the plant-Trichoderma interaction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Trichoderma , Trichoderma/genetics , Reactive Oxygen Species/metabolism , Arabidopsis Proteins/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Plant Roots , Gene Expression Regulation, Plant
2.
Protoplasma ; 259(5): 1175-1188, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34981212

ABSTRACT

The RNA polymerase II drives the biogenesis of coding and non-coding RNAs for gene expression. Here, we describe new roles for its second-largest subunit, NRPB2, on root organogenesis and regeneration. Down-regulation of NRPB2 activates a determinate developmental program, which correlated with a reduction in mitotic activity, cell elongation, and size of the root apical meristem. Noteworthy, nrpb2-3 mutants manifest cell death in pro-vascular cells within primary root tips of plants grown in darkness or exposed to light, which triggers the expression of the regeneration gene marker ERF115 in neighbor cells close to damage. Auxin and stem cell niche (SCN) gene expression as well as structural analysis revealed that NRPB2 maintains SCN activity through distribution of PIN transporters in root tissues. Wild-type seedlings regenerated the root tip after excision of the QC and SCN, but nrpb2-3 mutants did not rebuild the missing tissues, and this process could be genotypified using pERF115:GFP, DR5:GFP, and pWOX5:GFP reporter constructs. The levels of reactive oxygen species increased in the mutants four days after germination and strongly decreased at later times, whereas nitric oxide accumulated as the root tip differentiates. These results show the importance of the transcriptional machinery for root organogenesis, cell viability, and regenerative capacity for reconstruction of tissues and organs upon injury.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Survival , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Meristem/metabolism , Plant Roots/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Stem Cell Niche
SELECTION OF CITATIONS
SEARCH DETAIL
...