Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Toxicon ; 243: 107742, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38705486

ABSTRACT

Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.


Subject(s)
Angiogenesis Inhibitors , Bothrops , Cell Proliferation , Crotalid Venoms , Lung Neoplasms , Animals , Humans , Angiogenesis Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Cell Proliferation/drug effects , Phospholipases A2/pharmacology , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Vascular Endothelial Growth Factor A/metabolism , A549 Cells , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Reactive Oxygen Species/metabolism , Venomous Snakes
2.
Microbes Infect ; 25(6): 105123, 2023.
Article in English | MEDLINE | ID: mdl-36870599

ABSTRACT

One-third of the world's population is estimated to be affected by toxoplasmosis. Pregnancy-related Toxoplasma gondii infection can cause vertical transmission, infect the fetus, and cause miscarriage, stillbirth, and fetal death. The current study showed that both human trophoblast cells (BeWo lineage) and human explant villous were resistant to T. gondii infection after incubation with BjussuLAAO-II, an l-amino acid oxidase isolated from Bothrops jararacussu. Almost 90% of the parasite's ability to proliferate in BeWo cells was decreased by the toxin at 1.56 µg/mL and showed an irreversible anti-T. gondii effect. Also, BjussuLAAO-II impaired the key events of adhesion and invasion of T. gondii tachyzoites in BeWo cells. BjussuLAAO-II antiparasitic properties were associated with the intracellular production of reactive oxygen species and hydrogen peroxide, since the presence of catalase restored the parasite's growth and invasion. In addition, T. gondii growth in human villous explants was decreased to approximately 51% by the toxin treatment at 12.5 µg/mL. Furthermore, BjussuLAAO-II treatment altered IL-6, IL-8, IL-10 and MIF cytokines levels, assuming a pro-inflammatory profile in the control of T. gondii infection. This study contributes to the potential use of a snake venom l-amino acid oxidase for the development of agents against congenital toxoplasmosis and the discovery of new targets in parasites and host cells.


Subject(s)
Bothrops , Toxoplasma , Toxoplasmosis , Pregnancy , Female , Animals , Humans , Trophoblasts/parasitology , Pregnancy Trimester, Third , L-Amino Acid Oxidase/pharmacology , Toxoplasmosis/parasitology , Snake Venoms
3.
Cells ; 10(6)2021 06 11.
Article in English | MEDLINE | ID: mdl-34208346

ABSTRACT

Phospholipids are suggested to drive tumorigenesis through their essential role in inflammation. Phospholipase A2 (PLA2) is a phospholipid metabolizing enzyme that releases free fatty acids, mostly arachidonic acid, and lysophospholipids, which contribute to the development of the tumor microenvironment (TME), promoting immune evasion, angiogenesis, tumor growth, and invasiveness. The mechanisms mediated by PLA2 are not fully understood, especially because an important inhibitory molecule, Annexin A1, is present in the TME but does not exert its action. Here, we will discuss how Annexin A1 in cancer does not inhibit PLA2 leading to both pro-inflammatory and pro-tumoral signaling pathways. Moreover, Annexin A1 promotes the release of cancer-derived exosomes, which also lead to the enrichment of PLA2 and COX-1 and COX-2 enzymes, contributing to TME formation. In this review, we aim to describe the role of PLA2 in the establishment of TME, focusing on cancer-derived exosomes, and modulatory activities of Annexin A1. Unraveling how these proteins interact in the cancer context can reveal new strategies for the treatment of different tumors. We will also describe the possible strategies to inhibit PLA2 and the approaches that could be used in order to resume the anti-PLA2 function of Annexin A1.


Subject(s)
Annexin A1/metabolism , Carcinogenesis/pathology , Neoplasms/pathology , Phospholipases A2/metabolism , Animals , Carcinogenesis/metabolism , Humans , Neoplasms/metabolism
4.
Toxicol In Vitro, v. 72, 105099, jan. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3485

ABSTRACT

Antiangiogenic strategies are promising tools for cancer treatment and several other disorders. In this sense, phospholipases A2 (PLA2s) from snake venom have been described to possess antiangiogenic properties. In this study, we evaluated both in vitro and ex vivo antiangiogenic effects induced by BnSP-7, a Lys49 PLA2 isolated from Bothrops pauloensis snake venom. BnSP-7 was able to inhibit endothelial cell (HUVEC) proliferation, which was indeed confirmed by a modulation of cell cycle progression. Interestingly, BnSP-7 also inhibited the adhesion and migration of HUVECs and blocked in vitro angiogenesis in a VEGF-dependent manner, an important proangiogenic factor. Finally, BnSP-7 was capable of inhibiting sprouting angiogenic process through an ex vivo aortic ring assay. Taken together, these results indicate that BnSP-7 has potent in vitro and ex vivo antiangiogenic effect.

5.
Semin Cienc Agrar, v. 42, n. 1, p. 267-282, jan./fev. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3417

ABSTRACT

Bacterial resistance is a sanitary issue explained by indiscriminate use of nonprescription drugs, and antimicrobial use in food production for growth promotion. Bothropstoxin-I (BthTx-I) is a phospholipase A2 (PLA2) from Bothrops jararacussu venom, which has a known antimicrobial effect. The goal of this study was the unprecedented evaluation of in vivo antimicrobial activity of BthTx-I in broilers. Microbiological, biochemical, and histological parameters were determined using 84 21-day old broilers that were kept in cages with four birds each at a density of 625 cm2/broiler. The experiment was randomized by three treatments with seven repetitions of four broilers each that lasted seven days. The treatments were: 1) bacitracin zinc diet; 2) PLA2-BthTx-I; 3) without additives. The data obtained from the studied variables was subjected to analysis of variance and an F-test at the 5% significance level. Averages of each variable in each treatment were compared by Tukey’s test. Broiler bacterial cloacal counts showed that BthTx-I decreased the microbial population without reducing body weight, intestinal morphology, or liver or kidney histopathological damage. The toxin showed in vivo activity, being an alternative for better performance in the production of broiler chickens, because it acted by decreasing the microbial load of potentially pathogenic bacteria in the intestinal microbiota of the birds and did not cause muscle, liver or kidney damage at the assessed dosage.

6.
Bioorg Chem ; 96: 103562, 2020 03.
Article in English | MEDLINE | ID: mdl-31981911

ABSTRACT

Pain relief represents a critical unresolved medical need. Consequently, the search for new analgesic agents is intensively studied. Annona crassiflora, a native species of the Brazilian Savanna, represents a potential source for painful treatment. This study aimed to investigate the antinociceptive potential of A. crassiflora fruit peel, focusing on its major alkaloid, stephalagine, in animal models of pain evoked by the activation of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels. Male C57BL/6/J mice were submitted to formalin-, cinnamaldehyde-, and capsaicin-induced nociception tests to assess nociceptive behavior, and to the open-field and rotarod tests for motor performance analyses. Moreover, the stephalagine's effect was tested on capsaicin- and cinnamaldehyde-induced Ca2+ influx in spinal cord synaptosomes. In silico assessments of the absorption, distribution, metabolism and central nervous system permeability of stephalagine were carried out. The ethanol extract and alkaloidal fraction reduced the nociception induced by formalin. When administered by oral route (1 mg/kg), stephalagine reduced the spontaneous nociception and paw edema induced by TRPV1 agonist, capsaicin, and by TRPA1 agonists, cinnamaldehyde- and formalin, without altering the animals' locomotor activity. The prediction of in silico pharmacokinetic properties of stephalagine suggests its capacity to cross the blood-brain barrier. Furthermore, this alkaloid reduces the capsaicin- and cinnamaldehyde-mediated Ca2+ influx, indicating a possible modulation of TRPV1 and TRPA1 channels, respectively. Together, our results support the antinociceptive and anti-edematogenic effects of the A. crassiflora fruit peel and suggest that these effects are triggered, at least in part, by TRPV1 and TRPA1 modulation by stephalagine.


Subject(s)
Analgesics/pharmacology , Annona/chemistry , Aporphines/pharmacology , Calcium/metabolism , Formaldehyde/toxicity , TRPA1 Cation Channel/physiology , TRPV Cation Channels/physiology , Acrolein/administration & dosage , Acrolein/analogs & derivatives , Animals , Behavior, Animal , Capsaicin/administration & dosage , Ion Transport , Male , Mice , Mice, Inbred C57BL , Pain/chemically induced , TRPV Cation Channels/agonists
7.
Int J Biol Macromol, v. 164, p. 1545-1553, dez. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3419

ABSTRACT

Phospholipase A2 plays an important role in many diseases. Thus, the production of bioactive molecules, which can modulate PLA2 activity, became an important target for the pharmaceutical industry. Previously, we demonstrated the inhibitory and anti-angiogenic effect of γCdcPLI, the natural PLA2inhibitor from Crotalus durissus collilineatus. The aim of the present study was to recombinantly express the γCdcPLI inhibitor and analyze its biochemical and functional characteristics. Based on the amino acid sequence from the natural protein, we designed a synthetic gene for production of a non-tagged recombinant recγCdcPLI using the pHis-Parallel2 vector. To enable disulfide bond formation, protein expression was performed using E. coli Rosetta-gamiB. The protein was purified by anion and affinity chromatography with a yield of 5 mg/L. RecγCdcPLI showed similar secondary structure in CD and FTIR, revealing predominately β-strands. Analogous to the natural protein, recγCdcPLI was able to form oligomers of ~5.5 nm. The inhibitor was efficiently binding to PLA2 from honeybee (Kd = 1.48 μM) and was able to inhibit the PLA2 activity. Furthermore, it decreased the vessel formation in HUVEC cells, suggesting an anti-angiogenic potential. Heterologous production of recγCdcPLI is highly efficient and thus enables enhanced drug design for treatment of diseases triggered by PLA2 activity.

8.
Immunobiology, v. 225,n. 3, 151904, jan. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2906

ABSTRACT

B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas’ disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cgama1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.

9.
Immunobiology ; 225(3): 151904, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17368

ABSTRACT

B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas’ disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cgama1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.

10.
Int J Mol Sci ; 20(6)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30884823

ABSTRACT

Triple-negative breast cancers (TNBCs) are more aggressive than other breast cancer (BC) subtypes and lack effective therapeutic options. Unraveling marker events of TNBCs may provide new directions for development of strategies for targeted TNBC therapy. Herein, we reported that Annexin A1 (AnxA1) and Cathepsin D (CatD) are highly expressed in MDA-MB-231 (TNBC lineage), compared to MCF-10A and MCF-7. Since the proposed concept was that CatD has protumorigenic activity associated with its ability to cleave AnxA1 (generating a 35.5 KDa fragment), we investigated this mechanism more deeply using the inhibitor of CatD, Pepstatin A (PepA). Fourier Transform Infrared (FTIR) spectroscopy demonstrated that PepA inhibits CatD activity by occupying its active site; the OH bond from PepA interacts with a CO bond from carboxylic acids of CatD catalytic aspartate dyad, favoring the deprotonation of Asp33 and consequently inhibiting CatD. Treatment of MDA-MB-231 cells with PepA induced apoptosis and autophagy processes while reducing the proliferation, invasion, and migration. Finally, in silico molecular docking demonstrated that the catalytic inhibition comprises Asp231 protonated and Asp33 deprotonated, proving all functional results obtained. Our findings elucidated critical CatD activity in TNBC cell trough AnxA1 cleavage, indicating the inhibition of CatD as a possible strategy for TNBC treatment.


Subject(s)
Annexin A1/genetics , Cathepsin D/genetics , Molecular Docking Simulation , Triple Negative Breast Neoplasms/drug therapy , Apoptosis/drug effects , Autophagy/drug effects , Catalytic Domain/drug effects , Cathepsin D/antagonists & inhibitors , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Pepstatins/pharmacology , Spectroscopy, Fourier Transform Infrared , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
11.
Chembiochem, v. 20, n. 18, p. 2390-2401, set. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3196

ABSTRACT

Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP‐treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.

12.
Biomed Pharmacother, v. 112, 108586, jan. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2671

ABSTRACT

This work reports the biological evaluation of a copper complex of the type [Cu(O–O)(N–N)ClO4], in whichO–O = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (Hbta) and N–N = 1,10-phenanthroline (phen), whose genericname is CBP-01. The cytotoxic effect of CBP-01 was evaluated by resazurin assay and cell proliferation wasdetermined by MTT assay. DNA fragmentation was analyzed by gel electrophoresis. Cell cycle progression wasdetected through propidium iodide (PI) staining. Apoptosis and autophagy were determined by, respectively,Annexin V and 7-AAD staining and monodansylcadaverine (MDC) staining. The changes in intracellular reactiveoxygen species levels were detected by DCFDA analysis. The copper complex CBP-01 showed in vitro antitumoractivity with IC50s values of 7.4µM against Sarcoma 180 and 26.4 against murine myoblast cells, displayingselectivity toward the tumor cell tested in vitro (SI > 3). An increase in reactive oxygen species (ROS) gen-eration was observed, which may be related to the action mechanism of the complex. The complex CBP-01 mayinduce DNA damage leading cells to accumulate at G0/G1 checkpoint where, apparently, cells that are not ableto recover from the damage are driven to cell death. Evidence has shown that cell death is initiated by autophagydysfunction, culminating in apoptosis induction. The search for new metal-based drugs is focused on overcomingthe drawbacks of already used agents such as acquired resistance and non-specificity; thus, the results obtainedwith CBP-01 show promising effects on cancer cells.

13.
Biomed Pharmacother ; 112: 108586, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15833

ABSTRACT

This work reports the biological evaluation of a copper complex of the type [Cu(O–O)(N–N)ClO4], in whichO–O = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (Hbta) and N–N = 1,10-phenanthroline (phen), whose genericname is CBP-01. The cytotoxic effect of CBP-01 was evaluated by resazurin assay and cell proliferation wasdetermined by MTT assay. DNA fragmentation was analyzed by gel electrophoresis. Cell cycle progression wasdetected through propidium iodide (PI) staining. Apoptosis and autophagy were determined by, respectively,Annexin V and 7-AAD staining and monodansylcadaverine (MDC) staining. The changes in intracellular reactiveoxygen species levels were detected by DCFDA analysis. The copper complex CBP-01 showed in vitro antitumoractivity with IC50s values of 7.4µM against Sarcoma 180 and 26.4 against murine myoblast cells, displayingselectivity toward the tumor cell tested in vitro (SI > 3). An increase in reactive oxygen species (ROS) gen-eration was observed, which may be related to the action mechanism of the complex. The complex CBP-01 mayinduce DNA damage leading cells to accumulate at G0/G1 checkpoint where, apparently, cells that are not ableto recover from the damage are driven to cell death. Evidence has shown that cell death is initiated by autophagydysfunction, culminating in apoptosis induction. The search for new metal-based drugs is focused on overcomingthe drawbacks of already used agents such as acquired resistance and non-specificity; thus, the results obtainedwith CBP-01 show promising effects on cancer cells.

14.
Article in English | MEDLINE | ID: mdl-29164071

ABSTRACT

Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for ß-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.


Subject(s)
Chagas Disease/immunology , Chagas Disease/pathology , Galectin 3/immunology , Galectin 3/metabolism , Immunity, Innate/immunology , Trypanosoma cruzi/immunology , Animals , Cell Survival , Chagas Disease/parasitology , Chlorocebus aethiops , Collagen/analysis , Cytokines/metabolism , Disease Models, Animal , Fibrosis/immunology , Fibrosis/prevention & control , Galactosides , Galectin 3/genetics , Heart , Host-Parasite Interactions , Macrophages, Peritoneal/parasitology , Male , Mast Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Parasitemia , Spleen/immunology , Trypanosoma cruzi/pathogenicity , Vero Cells
15.
Sci Rep ; 7: 44978, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322302

ABSTRACT

Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.


Subject(s)
Angiogenesis Inhibitors/metabolism , Chagas Disease/etiology , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Actins/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Cell Line , Cell Proliferation , Chagas Disease/metabolism , Chagas Disease/parasitology , Cytoskeleton/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Extracellular Matrix , Gene Expression Regulation , Humans , Mice , Models, Biological , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Protein Multimerization , Protozoan Proteins/pharmacology , Receptors, CXCR4 , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
16.
Sci. Rep. ; 7: 44978, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15381

ABSTRACT

Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.

17.
Molecules ; 17(8): 9573-89, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22885357

ABSTRACT

Trachylobane-360 (ent-7α-acetoxytrachyloban-18-oic acid) was isolated from Xylopia langsdorffiana. Studies have shown that it has weak cytotoxic activity against tumor and non-tumor cells. This study investigated the in vitro and in vivo antitumor effects of trachylobane-360, as well as its cytotoxicity in mouse erythrocytes. In order to evaluate the in vivo toxicological aspects related to trachylobane-360 administration, hematological, biochemical and histopathological analyses of the treated animals were performed. The compound exhibited a concentration-dependent effect in inducing hemolysis with HC50 of 273.6 µM, and a moderate in vitro concentration-dependent inhibitory effect on the proliferation of sarcoma 180 cells with IC50 values of 150.8 µM and 150.4 µM, evaluated by the trypan blue exclusion test and MTT reduction assay, respectively. The in vivo inhibition rates of sarcoma 180 tumor development were 45.60, 71.99 and 80.06% at doses of 12.5 and 25 mg/kg of trachylobane-360 and 25 mg/kg of 5-FU, respectively. Biochemical parameters were not altered. Leukopenia was observed after 5-FU treatment, but this effect was not seen with trachylobane-360 treatment. The histopathological analysis of liver and kidney showed that both organs were mildly affected by trachylobane-360 treatment. Trachylobane-360 showed no immunosuppressive effect. In conclusion, these data reinforce the anticancer potential of this natural diterpene.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Diterpenes/pharmacology , Sarcoma 180/drug therapy , Xylopia/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Body Weight/drug effects , Cell Survival/drug effects , Diterpenes/administration & dosage , Diterpenes/chemistry , Dose-Response Relationship, Drug , Female , Hematologic Tests , Hemolysis/drug effects , Inhibitory Concentration 50 , Mice , Organ Size/drug effects , Sarcoma 180/pathology , Transplantation, Homologous , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...