Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 9542, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533000

ABSTRACT

The geographic distribution of species depends on their relationships with climate and on the biotic interactions of the species. Ecological Niche Models (ENMs) mainly consider climatic variables only and may tend to overestimate these distributions, especially for species strongly restricted by biotic interactions. We identified the preference of Laelia speciosa for different host tree species and include this information in an ENM. The effect of habitat loss and climate change on the distribution of these species was also estimated. Although L. speciosa was recorded as epiphyte at six tree species, 96% of the individuals were registered at one single species (Quercus deserticola), which indicated a strong biotic interaction. We included the distribution of this host tree as a biotic variable in the ENM of L. speciosa. The contemporary distribution of L. speciosa is 52,892 km2, which represent 4% of Mexican territory and only 0.6% of the distribution falls within protected areas. Habitat loss rate for L. speciosa during the study period was 0.6% per year. Projections for 2050 and 2070 under optimistic and pessimistic climate change scenarios indicated a severe reduction in its distribution. Climaticaly suitable areas will also shift upwards (200-400 m higher). When estimating the distribution of a species, including its interactions can improve the performance of the ENMs, allowing for more  accurate estimates of the actual distribution of the species, which in turn allows for better conservation strategies.


Subject(s)
Orchidaceae/growth & development , Quercus/growth & development , Biodiversity , Climate Change , Conservation of Natural Resources/methods , Ecosystem , Mexico , Trees/growth & development
2.
Am J Bot ; 94(2): 184-93, 2007 Feb.
Article in English | MEDLINE | ID: mdl-21642220

ABSTRACT

We used isozymes (16 loci in 11 enzymatic systems) from Laelia speciosa, an endemic and endangered epiphytic orchid of Mexico, to assess the genetic diversity and population genetic structure in nine populations distributed along its geographic range, as well as to detect those populations that are genetically unique and therefore deserve high-priority protection. On average, the genetic diversity was high (percentage of polymorphic loci, P(p) = 76%, mean number of alleles per locus, A = 3.34, the average observed heterozygosity H(O) = 0.302, the average expected heterozygosity H(E) = 0.382). Moderate levels of inbreeding ( f = 0.216, 95% confidence interval = 0.029-0.381) were found. Low levels of genetic differentiation were observed among populations ((p) = 0.040); however, there was a significant correlation between geographic and genetic distances among the populations (Mantel test: r(2) = 0.43, P < 0.05). Populations located within the same mountain range were genetically more similar. Private alleles were found, so proper management requires protection and maintenance of genetic diversity throughout its range. In case of reintroduction, we suggest using individuals propagated from seeds from as many capsules as possible, from close populations. An ex situ conservation strategy also is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...