Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894871

ABSTRACT

Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Circulating MicroRNA , MicroRNAs , Pancreatic Neoplasms , Humans , Circulating MicroRNA/genetics , Mexico , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , MicroRNAs/metabolism , Biomarkers , Biomarkers, Tumor/genetics , Pancreatic Neoplasms
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047006

ABSTRACT

miRNAs modulate gene expression and play critical functions as oncomiRs or tumor suppressors. The miR-182-3p is important in chemoresistance and cancer progression in breast, lung, osteosarcoma, and ovarian cancer. However, the role of miR-182-3p in cervical cancer (CC) has not been elucidated. AIM: To analyze the role of miR-182-3p in CC through a comprehensive bioinformatic analysis. METHODS: Gene Expression Omnibus (GEO) databases were used for the expression analysis. The mRNA targets of miR-182-3p were identified using miRDB, TargetScanHuman, and miRPathDB. The prediction of island CpG was performed using the MethPrimer program. The transcription factor binding sites in the FLI-1 promoter were identified using ConSite+, Alibaba2, and ALGGEN-PROMO. The protein-protein interaction (PPI) analysis was performed in STRING 11.5. RESULTS: miR-182-3p was significantly overexpressed in CC patients and has potential as a diagnostic. We identified 330 targets of miR-182-3p including FLI-1, which downregulates its expression in CC. Additionally, the aberrant methylation of the FLI-1 promoter and Ap2a transcription factor could be involved in downregulating FLI1 expression. Finally, we found that FLI-1 is a possible key gene in the immune response in CC. CONCLUSIONS: The miR-182-3p/FLI-1 axis plays a critical role in immune response in CC.


Subject(s)
MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , Cell Line, Tumor , Cell Proliferation , Computational Biology , Gene Expression Regulation, Neoplastic , Immunity , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Uterine Cervical Neoplasms/pathology
3.
Int J Mol Sci ; 25(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38203443

ABSTRACT

Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , BRCA1 Protein , BRCA2 Protein , Carcinogenesis/genetics , DNA
4.
Int J Parasitol ; 50(12): 1011-1022, 2020 10.
Article in English | MEDLINE | ID: mdl-32822677

ABSTRACT

Epigenetic mechanisms such as histone acetylation and deacetylation participate in regulation of the genes involved in encystation of Entamoeba invadens. However, the histones and target residues involved, and whether the acetylation and deacetylation of the histones leads to the regulation of gene expression associated with the encystation of this parasite, remain unknown. In this study, we found that E. invadens histone H4 is acetylated in both stages of the parasite and is more highly acetylated during the trophozoite stage than in the cyst. Histone hyperacetylation induced by Trichostatin A negatively affects the encystation of E. invadens, and this inhibition is associated with the downregulation of the expression of genes implicated in the synthesis of chitin, polyamines, gamma-aminobutyric acid pathways and cyst wall proteins, all of which are important in the formation of cysts. Finally, in silico analysis and activity assays suggest that a class I histone deacetylase (EiHDAC3) could be involved in control of the expression of a subset of genes that are important in several pathways during encystation. Therefore, the identification of enzymes that acetylate and/or deacetylate histones that control encystation in E. invadens could be a promising therapeutic target for preventing transmission of other amoebic parasites such as E. histolytica, the causative agent of amoebiasis in humans.


Subject(s)
Entamoeba , Histone Deacetylases/metabolism , Animals , Chitin/metabolism , Entamoeba/enzymology , Humans , Protein Processing, Post-Translational , Trophozoites/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...