Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(5)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37754174

ABSTRACT

This study focuses on developing and evaluating two novel enantioselective biomimetic models for the active centers of oxidases (ascorbate oxidase and catalase). These models aim to serve as alternatives to enzymes, which often have limited action and a delicate nature. For the ascorbate oxidase (AO) model (compound 1), two enantiomers, S,S(+)cpse and R,R(-)cpse, were combined in a crystalline structure, resulting in a racemic compound. The analysis of their magnetic properties and electrochemical behavior revealed electronic transfer between six metal centers. Compound 1 effectively catalyzed the oxidation of ascorbic to dehydroascorbic acid, showing a 45.5% yield for the racemic form. This was notably higher than the enantiopure compounds synthesized previously and tested in the current report, which exhibited yields of 32% and 28% for the S,S(+)cpse and R,R(-)cpse enantiomers, respectively. This outcome highlights the influence of electronic interactions between metal ions in the racemic compound compared to pure enantiomers. On the other hand, for the catalase model (compound 2), both the compound and its enantiomer displayed polymeric properties and dimeric behavior in the solid and solution states, respectively. Compound 2 proved to be effective in catalyzing the oxidation of hydrogen peroxide to oxygen with a yield of 64.7%. In contrast, its enantiomer (with R,R(-)cpse) achieved only a 27% yield. This further validates the functional nature of the prepared biomimetic models for oxidases. This research underscores the importance of understanding and designing biomimetic models of metalloenzyme active centers for both biological and industrial applications. These models show promising potential as viable alternatives to natural enzymes in various processes.

2.
MethodsX ; 11: 102258, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37383625

ABSTRACT

At present, climate change, urbanization and globalization are the main factors that affect water quality, the primary vehicle for the translocation and permanence of emerging pollutants, resulting in a danger to human health and the environment. The scheelite-type compounds have been investigated owing to their interesting photocatalytic properties in water purification trough the removal of different organic and inorganic pollutants. In this article a method solid state for doping of bismuth(III) in systems Sr1-3xBi2xΦxMoO4 with (0 ≤ x ≤ 0.225) were obtained and, likewise its pelletizing process. Subsequently, these new materials were spectroscopically characterized with photocatalytic properties and finally is describe its development as oxidant against Rhodamine B. This work can be used for the synthesis of new Bi-doped strontium molybdates, which the best photochemical properties are chosen and, in turn, it is experimentally shown how can favor its absorption in the visible region. These electronic properties can be used in near studies, for to compressive the role of bismuth(III) in sheelite as photocatalyst and, to implement its use in the degradation of persistent pollutants that affect the world's water resources.•The doping of bismuth(III) for systems Sr1-3xBi2xΦxMoO4 modified the GAP absorption and this catalytic properties using this new solid state method.•The degradation of Rhodamine B for systems Sr1-3xBi2xΦxMoO4 as case study using of this methodology allows multiple applications associated with climate change such as: the degradation of emerging pollutants and the sensitization of semiconductors with solar claims.•The role of bismuth(III) in these systems can be harnessed to design similar materials with photocatalytic properties.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432347

ABSTRACT

Nanoparticles (NPs) of α-MnO2 have high applicability in photoelectrochemical, heterogeneous photocatalysis, optical switching, and disinfection processes. To widen this panorama about MnO2 NPs, the formation of this material by laser ablation and deposition by dip-coating on fluorine-doped tin oxide (FTO), were considered in this study. The optical, spectroscopic, electrochemical characterization, and the evaluation of the antimicrobial activity, plus the photocatalytic response, were measured herein in colloidal media and deposited. For the deposition of NPs on FTO sheet, an anode is produced with a pseudocapacitive behavior, and 2.82 eV of band gap (GAP) in comparison with colloidal NPs for a value of 3.84 eV. Both colloidal suspension and deposited NPs have intrinsic antibacterial activity against two representative microorganisms (E. coli and S. aureus), and this biological activity was significantly enhanced in the presence of UVA light, indicating photocatalytic activity of the material. Thus, both the colloidal suspension and deposited NPs can act as disinfecting agents themselves or via light activation. However, an antibacterial behavior different for E. coli and S. aureus was observed, in function of the aggregation state, obtaining total E. coli disinfection at 30 min for deposited samples on FTO.

4.
Ultrason Sonochem ; 80: 105814, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34763213

ABSTRACT

This work considered the sonochemical degradation (using a bath-type reactor, at 375 kHz and 106.3 W L-1, 250 mL of sample) of three representative halogenated pharmaceuticals (cloxacillin, diclofenac, and losartan) in urine matrices. The action route of the process was initially established. Then, the selectivity of the sonochemical system, to degrade the target pharmaceuticals in simulated fresh urine was compared with electrochemical oxidation (using a BDD anode, at 1.88 mA cm-2), and UVC/H2O2 (at 60 W of light and 500 mol L-1 of H2O2). Also, the treatment of cloxacillin in an actual urine sample by ultrasound and UVC/H2O2 was evaluated. More than 90% of the target compounds concentration, in the simulated matrix, was removed after 60 min of sonication. However, the sono-treatment of cloxacillin in the real sample was less efficient than in the synthetic urine. The ultrasonic process achieved 43% of degradation after 90 min of treatment in the actual matrix. In the sonochemical system, hydroxyl radicals in the interfacial zone were the main degrading agents. Meanwhile, in the electrochemical process, electrogenerated HOCl was responsible for the elimination of pharmaceuticals. In turn, in UVC/H2O2 both direct photolysis and hydroxyl radicals degraded the target pollutants. Interestingly, the degradation by ultrasound of the pharmaceuticals in synthetic fresh urine was very close to the observed in distilled water. Indeed, the sonodegradation had a higher selectivity than the other two processes. Despite the sono-treatment of cloxacillin was affected by the actual matrix components, this contrasts with the UVC/H2O2, which was completely inhibited in the real urine. The sonochemical process led to 100% of antimicrobial activity (AA) elimination after 75 min sonication in the synthetic urine, and âˆ¼ 20% of AA was diminished after 90 min of treatment in the real matrix. The AA decreasing was linked to the transformations of the penicillin nucleus on cloxacillin, the region most prone to electrophilic attacks by radicals according to a density theory functional analysis. Finally, predictions of biological activity confirmed that the sono-treatment decreased the activity associated with cloxacillin, diclofenac, and losartan, highlighting the positive environmental impact of degradation of chlorinated pharmaceuticals in urine.


Subject(s)
Water Pollutants, Chemical , Cloxacillin , Diclofenac , Hydrogen Peroxide , Hydroxyl Radical , Losartan , Pharmaceutical Preparations , Ultrasonics , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 270: 129491, 2021 May.
Article in English | MEDLINE | ID: mdl-33429235

ABSTRACT

Degradation of two representative antihypertensives, losartan (LOS) and valsartan (VAL) in water by photo-electro-Fenton (PEF), using a BDD anode in presence of sulfate anion was evaluated. PEF showed a fast elimination of these pollutants (>95% at 30 and 60 min of treatment for LOS and VAL, respectively). The main elimination route was the attacks of radicals produced in the system, having pseudo-first-order rate constants of 0.154 and 0.054 min-1 for LOS and VAL, correspondingly. Theoretical analyses of atomic charges were performed to rationalize the antihypertensives reactivity toward the electrogenerated degrading agents. Afterwards, the primary transformation products were assessed. The transformation products revealed that the degrading species attack the biphenyl-tetrazole, imidazole, and alcohol moieties on LOS. Meanwhile, carboxylic and amide groups, plus the central nucleus, were modified on VAL. These moieties corresponded well with the electron-rich sites indicated by the theoretical calculations. Also, the PEF process removed between 33 and 38% of total organic carbon after 5 h of electrolysis. Finally, it was considered LOS treatment in presence of oxalic acid (a typical organic waste of pharmaceutical industry), in addition to the pollutant degradation in effluents from municipal sewage treatment plants by PEF at pH ∼5. Oxalic acid accelerated LOS degradation. Meanwhile, in the effluent, the process led to 64% of LOS removal after 120 min of treatment, indicating the high potentiality of PEF to degrade antihypertensives in water containing organic and inorganic substances.


Subject(s)
Antihypertensive Agents , Water Pollutants, Chemical , Angiotensin II Type 1 Receptor Blockers , Electrodes , Hydrogen Peroxide , Kinetics , Oxidation-Reduction , Water
6.
Data Brief ; 31: 105692, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32490071

ABSTRACT

Losartan is a highly consumed antihypertensive worldwide and commonly found in effluents of municipal wastewater treatment plants. In the environment, losartan can promote harmful effects on organisms. Thus, an option to face this pollutant is the treatment by photochemical advanced oxidation processes. This dataset has two main components: 1) theoretical calculations on reactivity indexes for losartan, and 2) degradation of the pollutant throughout TiO2-photocatalysis and UVC/persulfate (UVC/PS). The first part of the work presents the data about HOMO and LUMO energies, optimized geometry, dipolar moment, HOMO/LUMO energy gap and total density distribution, in addition to ionization energy, electron affinity, chemical potential, hardness, softness and electrophilicity for losartan. Meanwhile, the second one depicts information on the routes involved in the degradation of the pharmaceutical by the oxidation processes, mineralization, toxicity evolution and losartan removal from a complex matrix (synthetic fresh urine). The data reported herein may be utilized for further researches related to elimination of pharmaceuticals in primary pollution sources such as urine. Moreover, this work also provides experimental and theoretical data useful for the understanding of the response of losartan to oxidative and photochemical processes.

7.
Data Brief ; 29: 105361, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32195299

ABSTRACT

Ampicillin and nafcillin antibiotics were treated by high frequency ultrasound (at 375 kHz and 24.4 W). Degradations followed pseudo-first order kinetics, which constants were k: 0.0323 min-1 for AMP and k: 0.0550 min-1 for NAF. Accumulation of sonogenerated hydrogen peroxide and inhibition degree of sonochemical removal (IDS) in presence of a radical scavenger were also stablished. Afterwards, ultrasound was combined with UVC light (sono-photolysis), with ferrous ion (sono-Fenton), and with ferrous ion plus UVC light (sono-photo-Fenton) to degrade the antibiotics. Furthermore, treatment of the pollutants in a complex matrix and removal of antimicrobial activity (AA) were considered. The antibiotics evolution was followed by HPLC-DAD technique and the accumulation of sonogenerated H2O2 was measured by an iodometry-spectrophotometry methodology (77.6 and 57.3 µmol L-1 of H2O2 after 30 min of sonication were accumulated in presence of AMP and NAF, respectively). IDS was analyzed through treatment of the antibiotics in presence of 2-propanol (87.1% for AMP and 56 % for NAF) and considering the hydrophobic character of pollutants (i.e., Log P values). Antimicrobial activity evolution was assessed by the Kirby-Bauer method using Staphylococcus aureus as indicator microorganism (sono-photo-Fenton process removed 100% of AA after 60 and 20 min for AMP and NAF, respectively). Finally, for degradations in the complex matrix, a simulated effluent of municipal wastewater treatment plant was utilized (sono-photo-Fenton led to degradations higher than 90 % at 60 min of treatment for both antibiotics). The data from the present work can be valuable for people researching on treatment of wastewaters containing antibiotics, application of advanced oxidation technologies and combination of sonochemical process with photochemical systems.

8.
Data Brief ; 28: 104883, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31886345

ABSTRACT

Dinuclear manganese (II- III) compounds, which are potential models of the active center of catalase, were synthetized. This type of metalloenzymes presents biological importance due to three factors: they are redox catalyst centres, they are able to carry out hydrolytic reactions and they participate in activated processes via Lewis acids. Structurally, their active centre is composed by dinuclear manganese compounds, linked to nitrogen and oxygen donor atoms. An octahedral geometry around the metal ions were found, with acetate, hydroxy and aquo ligands; which can work as molecule bridges between them. The acid medium favours the electronic transfer between Mn3+ - Mn2+ as redox centre at 1.559 V and the consequent oxidation of hydrogen peroxide or organic molecules. The work also reports the data of two chiral novel compounds, [Mn2(S,S(+)Hcpse)4(NaClO4)2(NaOH)(CH4O)]n·[(C2H6O)2]n·[(CH4O)2]n and its respective enantioisomer, in which µ-oxo being as bridge metal centre. The X-ray structural was obtained as well as the optical and magnetic properties using Circular Dichroism, Electronic Paramagnetic Resonance, Magnetic Susceptibility and X-ray photoelectron spectroscopy.

9.
Molecules ; 24(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817118

ABSTRACT

The modification of achira starch a thermoplastic biopolymer is shown. Glycerol and sorbitol, common plasticizers, were used in the molten state with organic acids such as oleic acid and lactic acid obtaining thermodynamically more stable products. The proportion of starch:plasticizer was 70:30, and the acid agent was added in portions from 3%, 6%, and 9% by weight. These mixtures were obtained in a torque rheometer for 10 min at 130 °C. The lactic acid managed to efficiently promote the gelatinization process by increasing the available polar sites towards the surface of the material; as a result, there were lower values in the contact angle, these results were corroborated with the analysis performed by differential scanning calorimetry and X-ray diffraction. The results derived from oscillatory rheological analysis had a viscous behavior in the thermoplastic starch samples and with the presence of acids; this behavior favors the transitions from viscous to elastic. The mixture of sorbitol or glycerol with lactic acid promoted lower values of the loss module, the storage module, and the complex viscosity, which means lower residual energy in the transition of the viscous state to the elastic state; this allows the compounds to be scaled to conventional polymer transformation processes.


Subject(s)
Lactic Acid/chemistry , Oleic Acid/chemistry , Plastics/chemistry , Rheology , Starch/chemistry , Temperature , Calorimetry, Differential Scanning , Elastic Modulus , Spectrophotometry, Ultraviolet , Starch/ultrastructure , Thermogravimetry , Torque , Viscosity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...