Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(22): 222503, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101393

ABSTRACT

Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other N=49 isotones. The 1/2^{+} isomer is interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band in ^{80}Zn, and points to shape coexistence in ^{79,80}Zn similar to the one observed in ^{78}Ni. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.

3.
Phys Rev Lett ; 122(4): 042502, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768318

ABSTRACT

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The ß-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb ß decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the ß decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.

4.
Phys Rev Lett ; 123(26): 262701, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31951442

ABSTRACT

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupted by a thermonuclear explosion rather than collapsing to form a neutron star. Importantly, our measurement resolves the last remaining nuclear physics uncertainty in the final evolution of degenerate oxygen-neon stellar cores, allowing future studies to address the critical role of convection, which at present is poorly understood.

5.
Phys Rev Lett ; 120(26): 262701, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004755

ABSTRACT

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. ^{158}Nd, ^{160}Pm, ^{162}Sm, and ^{164-166}Gd have been measured for the first time, and the precisions for ^{156}Nd, ^{158}Pm, ^{162,163}Eu, ^{163}Gd, and ^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S_{2n} and neutron pairing energy metrics D_{n}. The data do not support the existence of a subshell closure at N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated r-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar r-process abundances are observed.

6.
Phys Rev Lett ; 115(10): 102503, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26382674

ABSTRACT

The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

7.
Phys Rev Lett ; 115(6): 062502, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296113

ABSTRACT

Total absorption spectroscopy is used to investigate the ß-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For (87)Br and (88)Br the γ branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich (94)Rb the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled by introducing an enhancement of 1 order of magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proves to be correct, leads to a similar increase in the (n,γ) cross section that would have an impact on r process abundance calculations.

8.
Phys Rev Lett ; 110(8): 082302, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23473136

ABSTRACT

The transverse momentum (p(T)) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p+Pb collisions at sqrt[s(NN)]=5.02 TeV with the ALICE detector at the LHC. The p(T) spectra measured near central rapidity in the range 0.5

9.
Phys Rev Lett ; 110(1): 012301, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23383780

ABSTRACT

Measurements of charge-dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sqrt[s(NN)] = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudorapidity range |η| < 0.8 are presented as a function of the collision centrality, particle separation in pseudorapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge-dependent azimuthal correlations observed at RHIC and LHC energies.

10.
Phys Rev Lett ; 110(3): 032301, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23373913

ABSTRACT

The charged-particle pseudorapidity density measured over four units of pseudorapidity in nonsingle-diffractive p+Pb collisions at a center-of-mass energy per nucleon pair √(s(NN))=5.02 TeV is presented. The average value at midrapidity is measured to be 16.81±0.71 (syst), which corresponds to 2.14±0.17 (syst) per participating nucleon, calculated with the Glauber model. This is 16% lower than in nonsingle-diffractive pp collisions interpolated to the same collision energy and 84% higher than in d+Au collisions at s√(s(NN))=0.2 TeV. The measured pseudorapidity density in p+Pb collisions is compared to model predictions and provides new constraints on the description of particle production in high-energy nuclear collisions.

11.
Appl Radiat Isot ; 71(1): 34-6, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23085548

ABSTRACT

Pure samples of (131m)Xe, (133m)Xe, (133)Xe and (135)Xe facilitate the calibration and testing of noble gas sampler stations and related laboratory instrumentation. We have earlier reported a Penning trap-based production method for pure (133m)Xe and (133)Xe samples. Here we complete the work by reporting the successful production of pure (131m)Xe and (135)Xe samples using the same technique. In addition, we present data on xenon release from graphite.

12.
Eur Phys J C Part Fields ; 73(12): 2662, 2013.
Article in English | MEDLINE | ID: mdl-25814850

ABSTRACT

Differential cross sections of charged particles in inelastic pp collisions as a function of pT have been measured at [Formula: see text] at the LHC. The pT spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual [Formula: see text] cannot be described by NLO-pQCD, the relative increase of cross section with [Formula: see text] is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at [Formula: see text] up to pT=50 GeV/c as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

13.
Eur Phys J C Part Fields ; 73(6): 2456, 2013.
Article in English | MEDLINE | ID: mdl-25814861

ABSTRACT

Measurements of cross sections of inelastic and diffractive processes in proton-proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass MX <200 GeV/c2) [Formula: see text], and [Formula: see text], respectively at centre-of-mass energies [Formula: see text]; for double diffraction (for a pseudorapidity gap Δη>3) σDD/σINEL=0.11±0.03,0.12±0.05, and [Formula: see text], respectively at [Formula: see text]. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: [Formula: see text] mb at [Formula: see text] and [Formula: see text] at [Formula: see text]. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton-antiproton and proton-proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.

14.
Phys Rev Lett ; 110(15): 152301, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-25167254

ABSTRACT

We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.

16.
Phys Rev Lett ; 109(7): 072301, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-23006362

ABSTRACT

The ALICE experiment has measured the inclusive J/ψ production in Pb-Pb collisions at √s(NN) = 2.76 TeV down to zero transverse momentum in the rapidity range 2.5 < y < 4. A suppression of the inclusive J/ψ yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0%-80% most central collisions, is 0.545 ± 0.032(stat) ± 0.083(syst) and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/ψ production from charm quarks in a deconfined partonic phase can describe our data.

17.
Phys Rev Lett ; 109(3): 032501, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861839

ABSTRACT

Atomic masses of the neutron-rich isotopes (121-128)Cd, (129,131)In, (130-135)Sn, (131-136)Sb, and (132-140)Te have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei (135)Sn, (136)Sb, and (139,140)Te were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across N = 82 for Sn, with a Z dependence that is unexplainable by the current theoretical models.

18.
Phys Rev Lett ; 108(16): 162502, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22680713

ABSTRACT

A measurement of the final state distribution of the (8)B ß decay, obtained by implanting a (8)B beam in a double-sided silicon strip detector, is reported here. The present spectrum is consistent with a recent independent precise measurement performed by our collaboration at the IGISOL facility, Jyväskylä [O. S. Kirsebom et al., Phys. Rev. C 83, 065802 (2011)]. It shows discrepancies with previously measured spectra, leading to differences in the derived neutrino spectrum. Thanks to a low detection threshold, the neutrino spectrum is for the first time directly extracted from the measured final state distribution, thus avoiding the uncertainties related to the extrapolation of R-matrix fits. Combined with the IGISOL data, this leads to an improvement of the overall errors and the extension of the neutrino spectrum at high energy. The new unperturbed neutrino spectrum represents a benchmark for future measurements of the solar neutrino flux as a function of energy.

19.
Phys Rev Lett ; 108(8): 082001, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463524

ABSTRACT

The ALICE Collaboration has studied J/ψ production in pp collisions at √s=7 TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/ψ polarization parameters λ(θ) and λ(φ) were obtained. The study was performed in the kinematic region 2.5

SELECTION OF CITATIONS
SEARCH DETAIL
...