Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 101(11): 10177-10190, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30146286

ABSTRACT

Based on Swedish legislation, all herds where Salmonella of any serotype is detected are put under restrictions, and measures aiming at eradication are required. Costs for sampling and control have increased in recent years and the aim of this study was to investigate the efficiency of different sampling strategies. We also compiled test results from recent surveillance activities and used these to complement and compare with calculated results. Sensitivities and specificities at group and herd level were calculated for different test strategies. A scenario-tree modeling approach was used to account for the hierarchy of animals within herds, and different relative risk of salmonella in different age groups. Negative and positive predictive values (NPV and PPV), and probability of freedom from Salmonella were calculated to compare the added value of different sampling strategies. Results showed that more fecal samples than serological samples per group are needed to reach a group sensitivity >0.50. This also means that serological testing leads to a higher NPV. For example, with 10 negative test-results from a group of 25 animals in a herd with a suspicion of Salmonella, the NPV based on serology was 0.75 and based on culture was 0.56. For the PPV, testing based on culture from fecal sampling was superior, as specificity of such testing was close to perfect. By changing the threshold for considering a group positive, from 1 test-positive animal to 2, the PPV of serological results could be increased without substantial loss in NPV. The herd sensitivity based on (1) bulk milk sampling, (2) fecal sampling of all animals, and (3) bulk milk sampling and individual sera from 20 animals within each age group was 0.53, 0.88, and 0.95, respectively. In low-prevalence regions, this sensitivity was enough to verify a high probability of freedom (>0.99), as the probability of infection in such Swedish regions has been shown to be 0.01. For herds with a higher prior probability of infection, repeated sampling (2-9 sampling occasions) was needed to reach the same level of confidence. Analysis of surveillance data indicated that boot swabs can be used to replace the standard fecal sampling presently used in Sweden. It was also confirmed that the individual specificity of the tests used for serological testing of Swedish calves is high (0.99). The results can form a basis for fit-for-purpose testing strategies (e.g., surveillance or prepurchase testing).


Subject(s)
Cattle Diseases/prevention & control , Milk/metabolism , Salmonella Infections, Animal/prevention & control , Salmonella/immunology , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Epidemiological Monitoring , Feces/microbiology , Female , Prevalence , Salmonella/isolation & purification , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Sensitivity and Specificity , Serogroup , Sweden/epidemiology
2.
Vet Rec ; 167(13): 484-8, 2010 Sep 25.
Article in English | MEDLINE | ID: mdl-20871082

ABSTRACT

In September 2008, bluetongue virus serotype 8 (BTV-8) infection was detected for the first time in Sweden, in a dairy herd on the west coast. Two different previously published operational atmospheric dispersion models indicate that midges from infected regions in Europe are likely to have reached Sweden by atmospheric transport during an estimated infection window. Both models indicated that the likely dates for the incursion of midges were overnight on August 6 to 7 and August 14 to 15; however, the less constrained model indicated a number of additional possible dates. The distribution of infected herds detected by active surveillance coincides with the regions that were indicated by the models to have been reached by midges from regions in Denmark and Germany with infected herds. It is likely that several points of introduction of infected midges occurred, possibly on different occasions. No alternative routes for introduction of the infection to Sweden were identified, supporting the theory that BTV-8 was introduced by infected midges carried by the wind.


Subject(s)
Bluetongue/transmission , Cattle Diseases/transmission , Ceratopogonidae/virology , Insect Vectors/virology , Serotyping/veterinary , Animals , Bluetongue/epidemiology , Bluetongue virus/growth & development , Cattle , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Models, Biological , Sweden/epidemiology , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...