Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(5): 229, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565645

ABSTRACT

The growing interest in microfluidic biosensors has led to improvements in the analytical performance of various sensing mechanisms. Although various sensors can be integrated with microfluidics, electrochemical ones have been most commonly employed due to their ease of miniaturization, integration ability, and low cost, making them an established point-of-care diagnostic method. This concept can be easily adapted to the detection of biomarkers specific to certain cancer types. Pathological profiling of hepatocellular carcinoma (HCC) is heterogeneous and rather complex, and biopsy samples contain limited information regarding the tumor and do not reflect its heterogeneity. Circulating tumor DNAs (ctDNAs), which can contain information regarding cancer characteristics, have been studied tremendously since liquid biopsy emerged as a new diagnostic method. Recent improvements in the accuracy and sensitivity of ctDNA determination also paved the way for genotyping of somatic genomic alterations. In this study, three-electrode (Au-Pt-Ag) glass chips were fabricated and combined with polydimethylsiloxane (PDMS) microchannels to establish an electrochemical microfluidic sensor for detecting c.747G > T hotspot mutations in the TP53 gene of ctDNAs from HCC. The preparation and analysis times of the constructed sensor were as short as 2 h in total, and a relatively high flow rate of 30 µl/min was used during immobilization and hybridization steps. To the best of our knowledge, this is the first time a PDMS-based microfluidic electrochemical sensor has been developed to target HCC ctDNAs. The system exhibited a limit of detection (LOD) of 24.1 fM within the tested range of 2-200 fM. The sensor demonstrated high specificity in tests conducted with fully noncomplementary and one-base mismatched target sequences. The developed platform is promising for detecting HCC-specific ctDNA at very low concentrations without requiring pre-enrichment steps.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Micro-Electrical-Mechanical Systems , Humans , Microfluidics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Dimethylpolysiloxanes
2.
Electrophoresis ; 43(13-14): 1531-1544, 2022 07.
Article in English | MEDLINE | ID: mdl-35318696

ABSTRACT

Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%-98% at a frequency of 1 MHz and a magnitude of 10-12 Vpp . Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.


Subject(s)
Breast Neoplasms , Microfluidic Analytical Techniques , Neoplastic Cells, Circulating , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Separation/methods , Electrophoresis/methods , Female , Humans , Leukocytes/pathology , MCF-7 Cells , Neoplastic Cells, Circulating/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...