Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 357: 120835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581897

ABSTRACT

Euphorbia Rigida (E. Rigida), a lignocellulosic biomass with low ash content, is a suitable feedstock for pyrolysis. This work investigated the physicochemical characteristics and thermokinetic analysis of E. Rigida pyrolysis by using isoconversional and master plots methods. Ultimate and proximate analyses and oxygen bomb calorimeter were used to determine the physicochemical parameters. The activation energies were calculated using model-free methods (KAS, Friedman and Starink) and were found as 184, 178 and 185 kJ/mol, respectively. Using Fraser-Suzuki deconvolution, pseudo-components were also calculated and the active pyrolysis region was divided into three zones. The master plots showed that reaction order mechanisms (Fn) were effective in Zone I, and diffusion mechanisms (Dn) were well matched in Zone II and Zone III. The thermodynamic parameters (ΔH, ΔG and ΔS) were calculated and according to these results, E. Rigida pyrolysis was an endothermic and non-spontaneous process.


Subject(s)
Euphorbia , Pyrolysis , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Thermodynamics , Kinetics , Biomass
2.
Bioresour Technol ; 314: 123699, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32599526

ABSTRACT

In this study, pyrolysis kinetics and thermodynamic parameters of Safflower residues (SR) obtained from oil extraction were investigated by using TG/DSC-FTIR and py-GC/MS. Thermal analysis was performed from ambient temperature to 750 °C under a nitrogen atmosphere. The first-order reaction kinetics model was applied to thermal analysis data to determine apparent kinetic parameters. Activation energy and pre-exponential factor were calculated as 76.60 kJ.mol-1 and 1.89x106 min-1, respectively. The thermodynamic parameters such as the change in Gibb's free energy, the difference in enthalpy and the entropy change were calculated to be 201.36 kJ mol-1, 71.79 kJ mol-1, and -0.196 kJ mol-1, respectively. TG/FTIR analysis revealed that CO2, C6H5OH, and CC functional group as the main pyrolysis gas products. According to Py-GC/MS results of SR, the presence of high energy-containing compounds among the pyrolysis products was proved. All these results show that SR is suitable for pyrolysis to produce biofuel and/or chemicals.


Subject(s)
Carthamus tinctorius , Pyrolysis , Kinetics , Seeds , Thermodynamics , Thermogravimetry
3.
Bioresour Technol ; 279: 67-73, 2019 May.
Article in English | MEDLINE | ID: mdl-30711754

ABSTRACT

The identification of biomasses for pyrolytic conversion to biofuels depends on many factors, including: moisture content, elemental and volatile matter composition, thermo-kinetic parameters, and evolved gases. The present work illustrates how canola residue may be a suitable biofuel feedstock for low-temperature (<450 °C) slow pyrolysis with energetically favorable conversions of up to 70 wt% of volatile matter. Beyond this point, thermo-kinetic parameters and activation energies, which increase from 154.3 to 400 kJ/mol from 65 to 80% conversion, suggest that the energy required to initiate conversion is thermodynamically unfavorable. This is likely due to its higher elemental carbon content than similar residues, leading to enhanced carbonization rather than devolatilization at higher temperatures. Evolved gas analysis supports limiting pyrolysis temperature; ethanol and methane conversions are maximized below 500 °C with ∼6% water content. Carbon dioxide is the dominant evolved gas beyond this temperature.


Subject(s)
Biomass , Rapeseed Oil/metabolism , Biofuels , Carbon Dioxide/metabolism , Gases/metabolism , Hot Temperature , Kinetics , Pyrolysis , Temperature , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...