Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 112: 110897, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409054

ABSTRACT

Chitosan is an indispensable biopolymer for use as a drug carrier thanks to its non-toxic, biodegradable, biocompatible, antimicrobial, and anti-oxidative nature. In previous studies, chitosan was first dissolved into weak acids and formed into gel, then used for carrying pharmaceutically active compounds such as nanoparticles, capsules, composites, and films. Using the produced chitosan gel after dissolving it in weak acids has advantages, such as ease of processing for loading the required amount of active substance and making the desired shape and size. However, dissolved chitosan loses some of its natural properties such as fibrous structure, crystallinity, and thermal stability. In this study, for the first time, three-dimensional chitosan lenses obtained from an insect's (Tabanus bovinus) compound eyes, with the original shape intact, were tested as a drug carrier. A model drug, quercetin, was loaded into chitosan membrane, and its release profile was examined. Also, a point-of-care test was conducted for both chitin and chitosan membranes. Chitin and chitosan membranes obtained from insect corneal lenses were characterized by using FTIR, TGA, elemental analysis, and surface wettability analysis as well as stereo, binocular, and scanning electron microscopies. It was observed that chitosan membrane could be used as a drug carrier material. Both chitin and chitosan membranes will be improved for lateral flow assay, and these membranes can be tested for other bioengineering applications in further studies.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Insecta/metabolism , Membranes, Artificial , Quercetin/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cornea/metabolism , Drug Liberation , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lens, Crystalline/metabolism , Point-of-Care Testing , Quercetin/metabolism , Surface Properties , Wettability
2.
J Food Sci Technol ; 56(1): 140-148, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30728555

ABSTRACT

Salmonella is among the very important pathogens threating the human and animal health. Rapid and easy detection of these pathogens is crucial. In this context, antibody (Ab) based lateral flow assays (LFAs) which are simple immunochromatographic point of care test kits were developed by gold nanoparticles (GNPs) as labelling agent for Salmonella detection. For that purpose some critical parameters such as reagent concentrations on the capture zones, conjugate concentrations and ideal membrane type needed for LFAs for whole cell detection were tested for naked eye analysis. Therefore, prepared LFAs were applied to the live and heat inactivated cells when they were used alone or included in different bacterial mixtures. Among the test platforms, membrane 180 (M180) was found as an ideal membrane and 36 nm GNPs showed highly good labelling in the developed LFAs. Diluted conjugates and low concentrations of reagents affected the test signal negatively. Salmonella was detected in different bacterial mixtures, selectively in 4-5 min. The best recognized species by used Ab were S. enteritidis and S. infantis. 5 × 105 S. typhimurium cells were also determined as a limit of detection of this study with mentioned parameters.

3.
Turk J Biol ; 41(6): 954-968, 2017.
Article in English | MEDLINE | ID: mdl-30814860

ABSTRACT

Lateral flow assay (LFA), or the immunochromatographic strip test, is popular to use for rapid and sensitive immunoassays. Gold nanoparticles (GNPs), due to tunable optical characteristics and easy manipulation of size or shape, represent an attractive approach for LFA technology. Since most enterohemorrhagic infections result from water and food contaminations of Escherichia coli O157:H7, selective and rapid detection of this organism in environmental and biological complexes is necessary. In this study, optimized parameters of antibody (Ab)-based LFA for rapid detection of pathogenic E. coli O157:H7 are described. GNPs were used as visualizing agents. The measuring parameters include the Ab concentration on the capture lines, the concentration of gold conjugate, and flow rate. M180 and 36 nm were the ideal membrane and GNP size, respectively, for bacterial detection of LFA. The target, E. coli O157:H7, could be detected with a visual limit of detection of 105 cfu/mL in 3-5 min. Selectivity of the system was very high and the target was recognized by developed strips, regardless of its presence singly or in mixed bacterial samples.

4.
Analyst ; 141(8): 2595-9, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27041474

ABSTRACT

A fast, sensitive and ratiometric biosensor strategy for small molecule detection was developed through nanopore actuation. The new platform engineers together, a highly selective molecular recognition element, aptamers, and a novel signal amplification mechanism, gated nanopores. As a proof of concept, aptamer gated silica nanoparticles have been successfully used as a sensing platform for the detection of ATP concentrations at a wide linear range from 100 µM up to 2 mM.

5.
Nanotechnology ; 21(17): 175104, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20368680

ABSTRACT

Silver nanoparticles (AgNPs) are widely used in household products and in medicine due to their antibacterial and to wound healing properties. In recent years, there is also an effort for their use in biomedical imaging and photothermal therapy. The primary reason behind the effort for their utility in biomedicine and therapy is their unique plasmonic properties and easy surface chemistry for a variety of functionalizations. In this study, AgNPs modified with glucose, lactose, oligonucleotides and combinations of these ligands are investigated for their cytotoxicity and cellular uptake in living non-cancer (L929) and cancer (A549) cells. It is found that the chemical nature of the ligand strongly influences the toxicity and cellular uptake into the model cells. While the lactose-and glucose-modified AgNPs enter the L929 cells at about the same rate, a significant increase in the rate of lactose-modified AgNPs into the A549 cells is observed. The binding of oligonucleotides along with the carbohydrate on the AgNP surfaces influences the differential uptake rate pattern into the cells. The cytotoxicity study with the modified AgNPs reveals that only naked AgNPs influence the viability of the A549 cells. The findings of this study may provide the key to developing effective applications in medicine such as cancer therapy.


Subject(s)
Biocompatible Materials/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Animals , Biocompatible Materials/chemistry , Cell Line , Cell Line, Tumor , Cell Shape/drug effects , Cell Survival/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Glucose/metabolism , Humans , Lactose/metabolism , Materials Testing/methods , Metal Nanoparticles/chemistry , Mice , Microscopy, Confocal , Oligonucleotides/metabolism , Particle Size , Silver/chemistry , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...