Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Biophys ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811473

ABSTRACT

Proton channels play a crucial role in many biological functions, as they are responsible for the selective transport of protons across cell membranes. Recently, Otopetrins, a family of eukaryotic proton-selective ion channels, have attracted significant attention due to their diverse physiological roles. Despite the importance of Otopetrins, their structural and functional properties remain relatively unexplored. As a model organism, crayfish have been extensively studied to gain insights into the functioning of the nervous system. These studies cover a wide range of aspects, including the properties of individual neurons and behavioral science. However, studying the physiological systems of crayfish poses challenges for molecular research due to limited molecular sequence information available for these organisms. In the present work was identified an originally cloned mRNA, coding an Otopetrin like proton channel in the crayfish. The coded protein was modeled in silico and possible conduction mechanisms and pathways were revealed. A plasmid of the cloned mRNA was heterologously expressed in HEK293T cells. Functional experiments on transfected cells indicated that the expressed mRNA was coupled to proton conduction across the cell membrane.

2.
Environ Sci Pollut Res Int ; 30(20): 58813-58826, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36997779

ABSTRACT

This study investigates the effect of curing temperature and foam/slag ratio on Na2SiO3- and NaOH-activated slag-based geopolymer foam composites (GFC) having thermal insulation properties. In this regard, samples used in the study were produced by adding foam at three different ratios (12.5, 15, and 17.5% by weight of slag) to the slag-based GFC having solutions with two different activator concentrations (7 M NaOH and 3 M Na2SiO3). Then, these samples were exposed to three different curing temperatures (40, 60, and 22 °C). The compressive strength, dry density, unit weight, water absorption, capillarity, apparent porosity, ultrasonic pulse velocity, and thermal conductivity tests were performed on the GFC samples for 1, 3, 7, and 28 days. Scanning electron microscopy (SEM) analyses were also conducted to characterize the pore structure and crack development of the GFCs. In addition, XRD analyses were performed on selected series to determine the formed reaction products of GFCs. As a result, it was observed that high curing temperature both improved mechanical strength and physical properties in GFC samples. The highest mechanical strength was obtained in the GFC with a 12.5% foam ratio and curing at 60 °C, while the lowest thermal conductivity coefficient was achieved in GFC with a 17.5% foam ratio and cured at 60 °C. In general, with the increase of foam ratio in slag-based GFC samples, unit weight, compressive strength, and ultrasonic pulse velocity results decreased, while capillarity, water absorption, and apparent porosity results increased. According to the results, it was seen that slag-based GFCs could be used in the construction of load-bearing and non-load-bearing walls.


Subject(s)
Fever , Water , Humans , Sodium Hydroxide , Compressive Strength , Heart Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...