Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38103305

ABSTRACT

Opnurasib (JDQ-443) is a highly potent and promising KRASG12C inhibitor that is currently under clinical investigation. Results of the ongoing clinical research demonstrated the acceptable safety profile and clinical activity of this drug candidate as a single agent for patients with NSCLC harboring KRASG12C mutations. In this early stage of development, a deeper insight into pharmacokinetic properties in both preclinical and clinical investigations of this drug is very important. Thus, a reliable quantification method is required. To date, no quantitative bioanalytical assay of opnurasib was publicly available. In this study we present a validated assay to quantify opnurasib in mouse plasma and eight mouse tissue-related matrices utilizing liquid chromatography-tandem mass spectrometry. Erlotinib was used as internal standard and acetonitrile was utilized to treat 10 µl of the sample with protein precipitation in a 96-well plate format. Separation and detection were achieved using a BEH C18 column under basic chromatographic conditions and a triple quadrupole mass spectrometer, respectively. We have fully validated this assay for mouse plasma and partially for eight mouse tissue-related matrices over the range of 2-2000 ng/ml. The accuracy and precision of the assay fulfilled international guidelines (EMA & U.S. FDA) over the validated range. The method was proven selective and sensitive to quantify opnurasib down to 2 ng/ml in all investigated matrices. The recoveries of both analyte and internal standard in mouse plasma were ∼100 % with no significant matrix effect in any of the matrices. Opnurasib in mouse plasma was stable up to 12 h at room temperature, and up to 8 h at room temperature in tissue homogenates (except for kidney up to 4 h). This presented method has been successfully applied to quantify opnurasib in preclinical samples from a mouse study and demonstrated its usability to support preclinical pharmacokinetic studies.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Proto-Oncogene Proteins p21(ras) , Humans , Mice , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Erlotinib Hydrochloride , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL