Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phytopathology ; : PHYTO11230442R, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38619562

ABSTRACT

Spot form net blotch, caused by Pyrenophora teres f. maculata, is a significant necrotrophic disease of barley that spread worldwide in the twentieth century. Genetic relationships were analyzed to determine the diversity, survival, and dispersal of a diverse collection of 346 isolates from Australia, Southern Africa, North America, Asia Minor, and Europe. The results, based on genome-wide DArTseq data, indicated that isolates from Turkey were the most differentiated with regional sub-structuring, together with individuals closely related to geographically distant genotypes. Elsewhere, population subdivision related to country of origin was evident, although low levels of admixturing was found that may represent rare genotypes or migration from unsampled populations. Canadian isolates were the next most diverged, and Australian and South African the most closely related. With the exception of Turkish isolates, multiple independent Cyp51A mutation events (which confer insensitivity to demethylation inhibitor fungicides) between countries and within regions was evident, with strong selection for a transposable element insertion at the 3' end of the promoter and counterselection elsewhere. Individuals from Western Australia shared genomic regions and Cyp51A haplotypes with South African isolates, suggesting a recent common origin. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

2.
Theor Appl Genet ; 136(1): 15, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36662256

ABSTRACT

KEY MESSAGE: Rhynchosporium commune is a globally devastating pathogen of barley. Wild and landrace barley are underutilized, however, contain an abundance of loci that can be used as potential sources of resistance. Rhynchosporium commune, the causal agent of the disease scald or leaf blotch of barley, is a hemibiotrophic fungal pathogen of global importance, responsible for yield losses ranging from 30 to 40% on susceptible varieties. To date, over 150 resistance loci have been characterized in barley. However, due to the suspected location of the R. commune host jump in Europe, European germplasm has been the primary source used to screen for R. commune resistance leaving wild (Hordeum spontaneum) and landrace (H. vulgare) barley populations from the center of origin largely underutilized. A diverse population consisting of 94 wild and 188 barley landraces from Turkey were genotyped using PCR-GBS amplicon sequencing and screened with six Turkish R. commune isolates. The isolates were collected from distinct geographic regions of Turkey with two from the Aegean region, two from central Turkey and two from the Fertile Crescent region. The data set was utilized for association mapping analysis with a total of 21 loci identified, of which 12 were novel, indicating that these diverse primary barley gene pools contain an abundance of novel R. commune resistances that could be utilized for resistance breeding.


Subject(s)
Ascomycota , Hordeum , Hordeum/genetics , Hordeum/microbiology , Turkey , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
3.
J Plant Physiol ; 279: 153839, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36370615

ABSTRACT

Pyrenophora teres f. maculata (Ptm) is a fungal pathogen that causes the spot form of net blotch on barley and leads to economic losses in many of the world's barley-growing regions. Isolates of Ptm exhibit varying levels of aggressiveness that result in quantifiable changes in the severity of the disease. Previous research on plant-pathogen interactions has shown that such divergence is reflected in the proteome and secretome of the pathogen, with certain classes of proteins more prominent in aggressive isolates. Here we have made a detailed comparative analysis of the secretomes of two Ptm isolates, GPS79 and E35 (highly and mildly aggressive, respectively) using a proteomics-based approach. The secretomes were obtained in vitro using media amended with barley leaf sections. Secreted proteins therein were harvested, digested with trypsin, and fractionated offline by HPLC prior to LC-MS in a high-resolution instrument to obtain deep coverage of the proteome. The subsequent analysis used a label-free quantitative proteomics approach with relative quantification of proteins based on precursor ion intensities. A total of 1175 proteins were identified, 931 from Ptm and 244 from barley. Further analysis revealed 160 differentially abundant proteins with at least a two-fold abundance difference between the isolates, with the most enriched in the aggressive GPS79 secretome. These proteins were mainly cell-wall (carbohydrate) degrading enzymes and peptidases, with some oxidoreductases and other pathogenesis-related proteins also identified, suggesting that aggressiveness is associated with an improved ability of GPS79 to overcome cell wall barriers and neutralize host defense responses.


Subject(s)
Ascomycota , Hordeum , Peptide Hydrolases , Proteome , Cell Wall
4.
G3 (Bethesda) ; 11(11)2021 10 19.
Article in English | MEDLINE | ID: mdl-34849783

ABSTRACT

Unimproved landraces and wild relatives of crops are sources of genetic diversity that were lost post domestication in modern breeding programs. To tap into this rich resource, genome-wide association studies in large plant genomes have enabled the rapid genetic characterization of desired traits from natural landrace and wild populations. Wild barley (Hordeum spontaneum), the progenitor of domesticated barley (Hordeum vulgare), is dispersed across Asia and North Africa, and has co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f. teres and P. teres f. maculata, the causal agents of the diseases net form of net blotch and spot form of net blotch, respectively. Thus, these wild and local adapted barley landraces from the region of origin of both the host and pathogen represent a diverse gene pool to identify new sources of resistance, due to millions of years of co-evolution. The barley-P. teres pathosystem is governed by complex genetic interactions with dominant, recessive, and incomplete resistances and susceptibilities, with many isolate-specific interactions. Here, we provide the first genome-wide association study of wild and landrace barley from the Fertile Crescent for resistance to both forms of P. teres. A total of 14 loci, four against P. teres f. maculata and 10 against P. teres f. teres, were identified in both wild and landrace populations, showing that both are genetic reservoirs for novel sources of resistance. We also highlight the importance of using multiple algorithms to both identify and validate additional loci.


Subject(s)
Hordeum , Ascomycota , Genome-Wide Association Study , Hordeum/genetics , Plant Breeding , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...