Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 22(6): 1124-1138, 2022.
Article in English | MEDLINE | ID: mdl-34353271

ABSTRACT

BACKGROUND: As a class with biological properties, such as anti-cancer, anti-bacterial, anti-HIV, and various physical effects, phosphazene derivatives constitute the most striking part of inorganic compounds. Anthraquinones, on the other hand, are a broad family of compounds with a wide variety of biological properties; the biologically active anthraquinones have been used as valuable compounds for biochemical and pharmacological research. OBJECTIVE: In this study, we aimed to investigate the effect of the anthraquinone substituted cyclotriphosphazene compounds on apoptosis and drug resistance in MCF-7 and DLD-1 cells. METHODS: In breast and colon cells, mRNA levels of multi-drug resistance genes (ABCB1, ABCC3, ABCC10, ABCC11, and ABCG2), apoptotic genes (BAX, BCL-2, p53, and PARP), heat shock (HSP27, HSP40, HSP60, HSP90α) and endoplasmic reticulum chaperone genes (GRP78, and GRP94) were determined by the qPCR method. The amount of proteins of the cell cycle, HSPs, apoptosis, and related signaling pathways were measured by the membrane array kits. RESULTS: Compounds 2, 3, 4, and 7 showed the most potent results on the ATP-binding cassette genes in both breast and colon cancer cells. These compounds have a remarkable effect on apoptotic, heat shock, and ER chaperone genes in cancer cells. Besides, these compounds induced protein levels of pro-apoptotic pathways, leading to apoptosis by inhibiting anti-apoptotic pathways. Also, these compounds decreased HSPs. CONCLUSION: These compounds have potential properties that eliminate drug resistance, suppress heat shock and ER chaperone genes, and drag cells to apoptotic cell death and are notable for drug studies.


Subject(s)
ATP-Binding Cassette Transporters , Apoptosis , Anthraquinones/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , MCF-7 Cells , Signal Transduction
2.
J Fluoresc ; 27(2): 595-601, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27854001

ABSTRACT

A new series of bodipy-functionalized cyclotriphosphazene derivatives were designed and synthesized. The identities of all newly synthesized compounds were confirmed by using 1H, 13C, 31P NMR spectroscopies. The photophysical properties of bodipy-functionalized cyclotriphosphazenes were investigated via absorption and fluorescense spectroscopies in dichloromethane. Singlet oxygen generation capacities of new compounds were also examined using the trap molecule 1,3-diphenylisobenzofuran. The targeted compounds showed high molar extinction coefficients in the NIR region and respectable singlet oxygen quantum yields when compared to that of methylene blue. The new bodipy-functionalized cyclotriphosphazenes are efficient photosensitizers to be potentially used for the singlet oxygen generation.

3.
Biosens Bioelectron ; 80: 331-338, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26852202

ABSTRACT

Cancer, as one of the leading causes of death in the world, is caused by malignant cell division and growth that depends on rapid DNA replication. To develop anti-cancer drugs this feature of cancer could be exploited by utilizing DNA-damaging molecules. To achieve this, the paraben substituted cyclotetraphosphazene compounds have been synthesized for the first time and their effect on DNA (genotoxicity) has been investigated. The conventional genotoxicity testing methods are laborious, take time and are expensive. Biosensor based assays provide an alternative to investigate this drug/compound DNA interactions. Here for the first time, a new, easy and rapid screening method has been used to investigate the DNA damage, which is based on an automated biosensor device that relies on the real-time electrochemical profiling (REP™) technology. Using both the biosensor based screening method and the in vitro biological assay, the compounds 9 and 11 (propyl and benzyl substituted cyclotetraphosphazene compounds, respectively), have resulted in higher DNA damage than the others with 65% and 80% activity reduction, respectively.


Subject(s)
Biosensing Techniques/instrumentation , DNA Damage/drug effects , Parabens/chemistry , Parabens/pharmacology , Phosphoranes/chemistry , Phosphoranes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA/genetics , Equipment Design , Humans , Models, Molecular , Mutagenicity Tests , Neoplasms/drug therapy , Neoplasms/genetics , Parabens/chemical synthesis , Phosphoranes/chemical synthesis
4.
J Fluoresc ; 25(6): 1819-30, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26420400

ABSTRACT

In the present work, 3-[2-(diethylamino)ethyl]-7-oxy-4-methylcoumarin substituted cyclotriphosphazene (4) and cyclotetraphosphazene (5) derivatives were synthesized by the reactions of hexachlorocyclotriphosphazene (1) or octachlorocyclotetraphosphazene (2) with 3-[2-(diethylamino)ethyl]-7-hydroxy-4-methylcoumarin (3) for the first time. The quaternized cationic (6 and 7) and zwitterionic (8 and 9) derivatives of these compounds (4 and 5) were obtained by the reactions of dimethyl sulfate and 1,3-propanesultone, respectively. All newly synthesized cyclophosphazene compounds (4-9) were fully characterized by elemental analysis and general spectroscopic techniques such as FT-IR, (31)P-NMR, (1)H-NMR and MALDI-TOF mass. All these coumarin substituted cyclophosphazene compounds (4-9) were soluble in most of organic solvents and quaternized ionic and zwitterionic compounds (6-9) also showed excellent solubility in water. The fluorescence behaviors of novel cyclophosphazene compounds were investigated in methanol and water solutions. The chemosensor properties of newly synthesized water soluble quaternized ionic and zwitterionic cyclotriphosphazene and cyclotetraphosphazene derivatives (6-9) were investigated in aqueous media. These cyclophosphazene derivatives showed fluorescence chemosensor behavior with high selectivity for Fe(3+) ions in aqueous solution.

5.
Eur J Med Chem ; 52: 213-20, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22483088

ABSTRACT

In the present study, a number of new dispirobino and dispiroansa spermine derivatives of cyclotriphosphazene (8-10, 13) were synthesized and characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy. At first, in vitro cytotoxic activity of cyclotriphosphazene compounds (1-14) against HT-29 (human colon adenocarcinoma), Hep2 (Human epidermoid larynx carcinoma), and Vero (African green monkey kidney) cell lines was investigated. Our study showed that most of these compounds stimulate apoptosis and they have cytotoxic effects for HT-29 and Hep2 cells. Additionally, these compounds (1-14) were investigated for their antibacterial activity against gram-positive (Staphylococcus aureus), gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and for their antifungal activity against Candida albicans, and were shown to be inactive.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chemistry Techniques, Synthetic , Phosphorus Compounds/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Bacteria/drug effects , Candida albicans/drug effects , Cell Line , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Phosphorus Compounds/chemistry , Phosphorus Compounds/pharmacology , Phosphorus Compounds/toxicity
6.
Dalton Trans ; 41(22): 6715-25, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22526867

ABSTRACT

Nucleophilic substitution reactions of N(3)P(3)Cl(4)[O(CH(2))(2)NCH(3)], (1) with the sodium salts of mono- and di-functional alcohols [methanol (2), phenol (3), tetraethyleneglycol (4) and 1,3-propanediol (5)] were carried out in order to investigate a possible directing effect of the spiro O-moiety on the formation of mono-substituted (2a, 3a), non-geminal di-substituted (2c, 3c) and ansa (4a, 5a) derivatives. Compounds isolated from the reactions were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and X-ray crystallographic analysis showed that the substituent OR in compounds (2a, 3a and 2c, 3c) and the ansa-ring in compounds (4a, 5a) formed cis to the P-O moiety of the exocyclic [O(CH(2))(2)NCH(3)] spiro ring. The formation of products (2a-d, 3a-d, 4a, 5a and 5b) was quantified from the (31)P NMR spectra of the reaction mixtures, which showed an overwhelming preference for derivatives (2a, 3a, 2c, 3c, 4a, 5a) with the substituent cis to the P-O moiety of the exocyclic spiro ring (2a, 3a, 2c, 3c, 4a, 5a), except for reaction with 1,3-propanediol where the six-membered ring spiro derivative (5b) was about three times more abundant than the eight-membered ring ansa-derivative (5a). Overwhelming formation of products with the substituent cis to the exocyclic P-O moiety is proof that the cation-assisted mechanism is responsible for the stereo-selectivity in the reactions with alkoxides.

7.
Dalton Trans ; 40(18): 4959-69, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21445437

ABSTRACT

Nucleophilic substitution reactions of N(3)P(3)Cl(4)[NH(CH(2))(3)NMe] (1) and N(3)P(3)Cl(4)[NH(CH(2))(3)O] (2) with mono-functional alcohols (methanol, 2,2,2-trifluoroethanol, phenol) and a secondary amine (pyrrolidine) were used to investigate the relationship between the incoming nucleophile and the proportions of products with substituents that are cis or trans to the spiro NH moiety. The reaction products were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and the configurational isomers by X-ray crystallography. Six products have been characterised with the substituent cis to the spiro NH group for the alcohol (methanol, phenol) and pyrrolidine derivatives of both compounds 1 and 2, compared to just one derivative with the substituent trans to the spiro NH group, that for the pyrrolidine derivative of compound 2. For each reaction the relative proportions of cis and trans isomers were determined by (31)P NMR measurements of the reaction mixtures. It was found that the reactions of compound 1 with all three alcohols and of compound 2 with methanol lead to exclusive formation of isomers with the substituent cis to the NH moiety, whereas all other reactions lead to mixtures of cis and trans isomers in different ratios under standard reaction conditions. However, when crown ether is included in the reaction medium for the reactions of compound 2 with both 2,2,2-trifluoroethanol and phenol, it is found that only cis isomers are formed. All these results are rationalised in terms of the competition between at least two effects; the cis-directing effect by hydrogen bonding of the incoming nucleophile to the spiro N-H group already present on the cyclophophazene ring and the cis-directing effect of the sodium cation coordinating to the oxygen lone pairs of the P-O moiety of the spiro ring.

8.
Article in English | MEDLINE | ID: mdl-19734084

ABSTRACT

This study dealt with the reactions of hexachlorocyclotriphosphazatriene, N(3)P(3)Cl(6) (trimer) (1) with phenolphthalein (2) to give the phenolphthalein bridged compounds 3, 4 and 5. The phenolphthalein bridged cyclotriphosphazatriene derivatives are reported for the first time. The new compounds (3-5) are characterized by elemental analysis, mass spectrometry, UV-vis, FT-IR, (1)H, (31)P NMR and fluorescence spectroscopy. The more bridged phenolphthalein groups show the higher intensity of the absorption bands in the UV-vis spectra. Fluorescence spectrum of compound 3 shows a small band in the lower spectral range, while the spectra of compounds 4 and 5 show more intense and a band in higher spectral range.


Subject(s)
Organophosphorus Compounds/chemistry , Phenolphthaleins/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared
9.
Acta Crystallogr B ; 60(Pt 6): 739-47, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15534385

ABSTRACT

A systematic study is reported of the products of the nucleophilic substitution reactions of the spermine-bridged cyclotriphosphazene, [N3P3X4(NHCH2CH2CH2N)CH2CH2]2 [where X = Cl (2a)], to give a number of new structures [(2b)-(2g)] in which X = OPh, [spiro-O(CH2)3O]0.5, Ph, NHPh, NC4H8 and NHBut, respectively. A comparison has been made between the sum of the substituent basicity constants, Sigmaalpha(R), obtained in nitrobenzene solution, and ten molecular parameters of the N3P3 ring (the internal bond angles alpha, beta, gamma, delta and theta;, and the P-N bond lengths a, b, c, d and e) as well as the difference between the bond lengths a and b, Delta(P-N). It is found that the systematic change in molecular parameters of compounds (2a)-(2g) is in line with changes in alphaR values, indicating the similarity in relative electron-releasing capacity of substituents X in the solid state and in solution. It is also found that the effect on molecular parameters of (2a)-(2g) with two X substituents in PX2 groups is greater than that for one X substituent in P(OR)X groups in an analogous series of compounds observed previously [Besli et al. (2002). Acta Cryst. B58, 1067-1073].

SELECTION OF CITATIONS
SEARCH DETAIL
...