Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiome ; 18(1): 80, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957741

ABSTRACT

Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibula, adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia. All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.

2.
Materials (Basel) ; 16(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37109801

ABSTRACT

The radionuclides of cesium (Cs) and strontium (Sr) are dangerous products of nuclear fission that can be accidentally released into wastewater. In the present work, the capacity of thermally treated natural zeolite (NZ) from Macicasu (Romania) to remove Cs+ and Sr2+ ions from aqueous solutions in batch mode was investigated by contacting different zeolite quantities (0.5, 1, and 2 g) of 0.5-1.25 mm (NZ1) and 0.1-0.5 mm (NZ2) particle size fractions with 50 mL working solutions of Cs+ and Sr2+ (10, 50, and 100 mg L-1 initial concentrations) for 180 min. The concentration of Cs in the aqueous solutions was determined by inductively coupled plasma mass spectrometry (ICP-MS), whereas the Sr concentration was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The removal efficiency of Cs+ varied between 62.8 and 99.3%, whereas Sr2+ ranged between 51.3 and 94.5%, depending on the initial concentrations, the contact time, the amount, and particle size of the adsorbent material. The sorption of Cs+ and Sr2+ was analyzed using the nonlinear form of Langmuir and Freundlich isotherm models and pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. The results indicated that the sorption kinetics of Cs+ and Sr2+ on thermally treated natural zeolite was described by the PSO kinetic model. Chemisorption dominates the retention of both Cs+ and Sr2+ by strong coordinate bonds with an aluminosilicate zeolite skeleton.

3.
Sci Rep ; 11(1): 18633, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545115

ABSTRACT

In this study we aimed to compare the mineralogical, thermal, physicochemical, and biological characteristics of recent organic carbon-rich sediments ('sapropels') from three geographically distant Romanian lakes (Tekirghiol and Amara, SE Romania, and Ursu, Central Romania) with distinct hydrogeochemical origins, presently used for pelotherapy. The investigated lakes were classified as inland brackish Na-Cl-sulfated type (Amara), coastal moderately saline and inland hypersaline Na-Cl types (Tekirghiol and Ursu, respectively). The settled organic matter is largely composed of photosynthetic pigments derived from autochthonous phytoplankton. Kerogen was identified in the sapropel of coastal Tekirghiol Lake suggesting its incipient maturation stage. The mineral composition was fairly similar in all sapropels and mainly consisted of quartz, calcite, and aragonite. Smectite, illite, mixed layer smectite/illite appeared as major clay components. Potentially toxic elements were found in low concentrations. The physical properties (i.e., specific heat, thermal conductivity and retentivity) and cation exchange capacity are comparable to other peloids used for therapy. This study is the first comprehensive multi-approached investigation of the geochemical nature of recent sapropels in Romanian saline lakes and thus contributes to expanding our knowledge on the origin and physicochemical qualities of organic matter-rich peloids with therapeutic uses.

4.
Biotechnol J ; 16(9): e2100031, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34242476

ABSTRACT

Wound healing is a highly dynamic process and innovative therapeutic approaches are currently developed to address challenges of providing optimal wound care. In this study, phosphate-based glasses in the (CuO)x ·(KPO3 )79.5-x ·(ZnO)20 ·(Ag2 O)0.5 system (CuKPO3 ZnAg), with different CuO/ KPO3 ratios were prepared by melt-quenching technique. Constant Cu concentrations were released from the samples during immersion in Simulated Body Fluid (SBF), while Zn concentrations were slightly decreased over time. Glass surface phosphatation leading to formation of Zn crystalline salts was revealed through spectroscopic techniques. This finding was supported by SEM images that illustrated new compound formation. Subsequent cytotoxicity evaluation on HaCaT Keratinocytes using the indirect MTT cell viability assay revealed a CuO concentration-dependent cytotoxicity profile and excellent biocompatibility at low CuO concentrations, in all CuKPO3 ZnAg glasses. Furthermore, the (CuO)5 ·(KPO3 )74.5 ·(ZnO)20 ·(Ag2 O)0.5 sample (5CuKPO3 ZnAg), demonstrated superior antibacterial potency against S. aureus (ATCC 25923) strain compared to amoxicillin and ciprofloxacin. In vivo full-thickness wound healing evaluation showed a significantly higher regenerative effect of the 5CuKPO3 ZnAg sample, in terms of angiogenesis, collagen synthesis and re-epithelialization compared to non-treated wounds. These findings advance our understanding of the therapeutic perspectives of phosphate-based glasses, showing promising potential for wound-healing applications.


Subject(s)
Phosphates , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Glass , Rats , Wound Healing
5.
Environ Microbiol ; 23(7): 3523-3540, 2021 07.
Article in English | MEDLINE | ID: mdl-31894632

ABSTRACT

Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0-3 m), an intermediate stratum exhibiting a steep halocline (3-3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987-0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958-0.956 water activity) at 3-3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.


Subject(s)
Bacteria , Lakes , Bacteria/genetics , Sodium Chloride , Sulfur , Water Microbiology
6.
FEMS Microbiol Lett ; 366(18)2019 09 01.
Article in English | MEDLINE | ID: mdl-31742601

ABSTRACT

Adaptive strategies responsible for heavy metal tolerance were explored in the extremely halophilic archaeon Halomicrobium mukohataei DSM 12286. The tested strain was seemingly able to overcome silver-induced oxidative stress (assessed by malondialdehyde quantification, catalase assay and total antioxidant capacity measurement) mainly through non-enzymatic antioxidants. Energy dispersive spectrometry analysis illustrated the presence of colloidal silver in Hmc. mukohataei cultures exposed to AgNO3. Bright-field and transmission electron microscopy images, as well as dynamic light scattering analysis, demonstrated the presence of intracellular nanoparticles, mostly spherical, within a size range of 20-100 nm. As determined by the zeta potential measurement, the biosynthesized nanoparticles were highly stable, with a negative surface charge. Our research is a first attempt in the systematic study of the oxidative stress and intracellular silver nanoparticle accumulation, generated by exposure to silver ions, in members of Halobacteria class, thus broadening our knowledge on mechanisms supporting heavy metal tolerance of microbial cells living under saline conditions.


Subject(s)
Adaptation, Physiological , Halobacteriaceae/drug effects , Halobacteriales/drug effects , Silver Nitrate/toxicity , Catalase/metabolism , Halobacteriaceae/metabolism , Halobacteriaceae/ultrastructure , Halobacteriales/metabolism , Halobacteriales/ultrastructure , Malondialdehyde/metabolism , Microbial Sensitivity Tests , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oxidative Stress , Particle Size , Silver/chemistry , Silver/metabolism , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...