Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732138

ABSTRACT

D-bifunctional protein deficiency (D-BPD) is a rare, autosomal recessive peroxisomal disorder that affects the breakdown of long-chain fatty acids. Patients with D-BPD typically present during the neonatal period with hypotonia, seizures, and facial dysmorphism, followed by severe developmental delay and early mortality. While some patients have survived past two years of age, the detectable enzyme activity in these rare cases was likely a contributing factor. We report a D-BPD case and comment on challenges faced in diagnosis based on a narrative literature review. An overview of Romania's first patient diagnosed with D-BPD is provided, including clinical presentation, imaging, biochemical, molecular data, and clinical course. Establishing a diagnosis can be challenging, as the clinical picture is often incomplete or similar to many other conditions. Our patient was diagnosed with type I D-BPD based on whole-exome sequencing (WES) results revealing a pathogenic frameshift variant of the HSD17B4 gene, c788del, p(Pro263GInfs*2), previously identified in another D-BPD patient. WES also identified a variant of the SUOX gene with unclear significance. We advocate for using molecular diagnosis in critically ill newborns and infants to improve care, reduce healthcare costs, and allow for familial counseling.


Subject(s)
Mitochondrial Trifunctional Protein/deficiency , Peroxisomal Multifunctional Protein-2 , Humans , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Infant, Newborn , Infant , Male , Female , Exome Sequencing , Frameshift Mutation , 17-Hydroxysteroid Dehydrogenases/deficiency , 17-Hydroxysteroid Dehydrogenases/genetics , Resource-Limited Settings , Mitochondrial Myopathies , Cardiomyopathies , Nervous System Diseases , Rhabdomyolysis
2.
Article in English | MEDLINE | ID: mdl-33946326

ABSTRACT

Neonatal brain injury or neonatal encephalopathy (NE) is a significant morbidity and mortality factor in preterm and full-term newborns. NE has an incidence in the range of 2.5 to 3.5 per 1000 live births carrying a considerable burden for neurological outcomes such as epilepsy, cerebral palsy, cognitive impairments, and hydrocephaly. Many scoring systems based on different risk factor combinations in regression models have been proposed to predict abnormal outcomes. Birthweight, gestational age, Apgar scores, pH, ultrasound and MRI biomarkers, seizures onset, EEG pattern, and seizure duration were the most referred predictors in the literature. Our study proposes a decision-tree approach based on clinical risk factors for abnormal outcomes in newborns with the neurological syndrome to assist in neonatal encephalopathy prognosis as a complementary tool to the acknowledged scoring systems. We retrospectively studied 188 newborns with associated encephalopathy and seizures in the perinatal period. Etiology and abnormal outcomes were assessed through correlations with the risk factors. We computed mean, median, odds ratios values for birth weight, gestational age, 1-min Apgar Score, 5-min Apgar score, seizures onset, and seizures duration monitoring, applying standard statistical methods first. Subsequently, CART (classification and regression trees) and cluster analysis were employed, further adjusting the medians. Out of 188 cases, 84 were associated to abnormal outcomes. The hierarchy on etiology frequencies was dominated by cerebrovascular impairments, metabolic anomalies, and infections. Both preterms and full-terms at risk were bundled in specific categories defined as high-risk 75-100%, intermediate risk 52.9%, and low risk 0-25% after CART algorithm implementation. Cluster analysis illustrated the median values, profiling at a glance the preterm model in high-risk groups and a full-term model in the inter-mediate-risk category. Our study illustrates that, in addition to standard statistics methodologies, decision-tree approaches could provide a first-step tool for the prognosis of the abnormal outcome in newborns with encephalopathy.


Subject(s)
Brain Injuries , Epilepsy , Apgar Score , Electroencephalography , Female , Humans , Infant , Infant, Newborn , Pregnancy , Retrospective Studies , Seizures/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...