Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 10(12): 3339-3345, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31141365

ABSTRACT

Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated ß-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the ß derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that αâ€¯â†”â€¯ß or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.

2.
Chemphyschem ; 19(6): 766-773, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29194904

ABSTRACT

Levoglucosan is one of the main products of the thermal degradation of glucose and cellulose and is commonly used as a tracer for biomass burning. Herein we report a conformational analysis of levoglucosan under isolation conditions, by means of microwave spectroscopy coupled with ultrafast laser vaporization in supersonic expansions. We observed three different conformations of levoglucosan in the gas phase. They all share a common heavy atom rigid bicyclic structure. The difference between the three of them lies in the network of intramolecular hydrogen bonds that arises from the OH groups at positions 2, 3 and 4. The different combinations of H-bonds give richness to the conformational landscape of levoglucosan. The gas phase conformers obtained in this work are compared to the crystal structure of levoglucosan previously reported. Although the heavy atom frame remains unchanged, there are significant differences in the positions of the H-atoms. In addition, the levoglucosan structure can be compared to the related glucose, for which gas phase conformational studies exist in the literature. In this case, in going from glucose to levoglucosan, there is an inversion in the chair conformation of the pyranose ring. This forces the OH groups to adopt axial positions (instead of the more favorable equatorial positions in glucose) and completely changes the pattern of intramolecular H-bonds.


Subject(s)
Glucose/analogs & derivatives , Glucose/chemistry , Hydrogen Bonding , Models, Chemical , Molecular Conformation , Ribose/chemistry , Spectrophotometry
3.
Chemistry ; 23(65): 16491-16496, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28759141

ABSTRACT

A rotational spectroscopy investigation has resolved the conformational equilibrium and structural properties of the alkaloid pseudopelletierine. Two different conformers, which originate from inversion of the N-methyl group from an axial to an equatorial position, have been unambiguously identified in the gas phase, and nine independent isotopologues have been recorded by Fourier-transform microwave spectroscopy in a jet expansion. Both conformers share a chair-chair configuration of the two bridged six-membered rings. The conformational equilibrium is displaced towards the axial form, with a relative population in the supersonic jet of Naxial /Nequatorial ≈2/1. An accurate equilibrium structure has been determined by using the semiexperimental mixed-estimation method and alternatively computed by quantum-chemical methods up to the coupled-cluster level of theory. A comparison with the N-methyl inversion equilibria in related tropanes is also presented.


Subject(s)
Alkaloids/chemistry , Gases/chemistry , Models, Molecular , Molecular Conformation , Quantum Theory , Thermodynamics
4.
Chemphyschem ; 17(19): 3030-3034, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27338110

ABSTRACT

The rotational spectrum of the tropane alkaloid scopine is detected by Fourier transform microwave spectroscopy in a pulsed supersonic jet. A nonconventional method for bringing the molecules intact into the gas phase is used in which scopine syrup is mixed with glycine powder and the solid mixture is vaporized with an ultrafast UV laser beam. Laser vaporization prevents the easy isomerization to scopoline previously observed with conventional heating methods. A single conformer is unambiguously observed in the supersonic jet and corresponds to the energetically most stable species according to quantum chemical calculations. Rotational and centrifugal distortion constants are accurately determined. The spectrum shows fine and hyperfine structure due to the hindered rotation of the methyl group and the presence of a quadrupolar nucleus (14 N), respectively. This additional information allows the angle of N-methyl inversion between the N-CH3 bond and the bicyclic C-N-C plane to be determined (131.8-137.8°), as well as the internal rotation barrier of the methyl group (6.235(1) kJ mol-1 ).


Subject(s)
Tropanes/isolation & purification , Fourier Analysis , Gases/chemistry , Microwaves , Molecular Structure , Quantum Theory , Tropanes/chemistry
5.
Phys Chem Chem Phys ; 18(23): 15555-63, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27212641

ABSTRACT

Fructose and deoxyribose (24 and 19 atoms, respectively) are too large for determining accurate equilibrium structures, either by high-level ab initio methods or by experiments alone. We show in this work that the semiexperimental (SE) mixed estimation (ME) method offers a valuable alternative for equilibrium structure determinations in moderate-sized molecules such as these monosaccharides or other biochemical building blocks. The SE/ME method proceeds by fitting experimental rotational data for a number of isotopologues, which have been corrected with theoretical vibration-rotation interaction parameters (αi), and predicate observations for the structure. The derived SE constants are later supplemented by carefully chosen structural parameters from medium level ab initio calculations, including those for hydrogen atoms. The combined data are then used in a weighted least-squares fit to determine an equilibrium structure (r). We applied the ME method here to fructose and 2-deoxyribose and checked the accuracy of the calculations for 2-deoxyribose against the high level ab initio r structure fully optimized at the CCSD(T) level. We show that the ME method allows determining a complete and reliable equilibrium structure for relatively large molecules, even when experimental rotational information includes a limited number of isotopologues. With a moderate computational cost the ME method could be applied to larger molecules, thereby improving the structural evidence for subtle orbital interactions such as the anomeric effect.


Subject(s)
Deoxyribose , Fructose , Models, Chemical , Computer Simulation , Molecular Structure
6.
Chem Commun (Camb) ; 52(37): 6241-4, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27079814

ABSTRACT

The investigation of an isolated ribofuranose unit in the gas phase reveals the intrinsic conformational landscape of the biologically active sugar form. We report the rotational spectra of two conformers of methyl ß-d-ribofuranoside in a supersonic jet expansion. Both conformers adopt a near twisted ((3)T2) ring conformation with the methoxy and hydroxymethyl substituents involved in various intramolecular hydrogen bonds.


Subject(s)
Furans/chemical synthesis , Sugars/chemistry , Carbohydrate Conformation , Furans/chemistry , Hydrogen Bonding
7.
J Phys Chem Lett ; 7(7): 1187-91, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26963732

ABSTRACT

The rotational spectra of two tautomers of purine have been measured by pulsed jet Fourier transform microwave spectroscopy coupled to a UV ultrafast vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four (14)N atoms, which have provided crucial information for the unambiguous identification of both species. This work shows the great potential of microwave spectroscopy to study isolated biomolecules in the gas phase. All the work was supported by theoretical calculations.

8.
Phys Chem Chem Phys ; 18(5): 3966-74, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26771032

ABSTRACT

The potential energy surface (PES) of the general anesthetic fluoroxene (2,2,2-trifluoroethyl vinyl ether) was probed in a supersonic jet expansion using broadband chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy and theoretical calculations. The PES is dominated by a single conformation, as other stable minima are shown to kinetically relax in the expansion to the global minimum. Consistently, the rotational spectrum reveals a single conformation. Fluoroxene adopts a CS heavy-atom planar skeleton structure in the gas phase, with a cis-trans conformation (cis for the CH2=CH-O-CH2- and trans for the =CH-O-CH2-CF3 part). The sensitivity of a recently-built CP-FTMW spectrometer at the UPV/EHU is demonstrated by the detection of five isotopologues of fluoroxene in natural abundance, corresponding to the (13)C and (18)O monosubstituted species. The rS and r0 structures were determined and are in good agreement with theoretical predictions using the MP2, B3LYP and M06-2X methods.

9.
Chemphyschem ; 16(12): 2609-14, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26182910

ABSTRACT

Exo-2,3-epoxynorbornane is studied in the gas phase by pulsed jet Fourier transform microwave spectroscopy in the 4-18 GHz region. Six isotopologues were observed and characterized in their natural abundance. The experimental substitution and effective structures were obtained. Comparison with the structure of norbornane shows significant differences in several bond lengths and valence angles upon introduction of the epoxy group. All the work is supported by quantum chemical calculations.

10.
Phys Chem Chem Phys ; 17(30): 19726-34, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-25767836

ABSTRACT

Succinic acid, a dicarboxylic acid molecule, has been investigated spectroscopically with computational support to elucidate the complex aspects of its conformational composition. Due to the torsional freedom of the carbon backbone and hydroxy groups, a large number of potentially plausible conformers can be generated with an indication that the gauche conformer is favored over the trans form. The microwave and millimeter wave spectra have been analyzed and accurate spectroscopic constants have been derived that correlate best with those of the lowest energy gauche conformer. For an unambiguous conformational identification measurements were extended to the monosubstituted isotopologues, precisely determining the structural properties. Besides bond distances and angles, particularly the dihedral angle has been determined to be 67.76(11)°, confirming the anomalous tendency of the methylene units to favor gauche conformers when a short aliphatic segment is placed between two carbonyl groups.


Subject(s)
Dicarboxylic Acids/chemistry , Succinic Acid/chemistry , Hydrogen Bonding , Molecular Conformation , Oxygen Isotopes/chemistry , Quantum Theory , Thermodynamics
11.
J Phys Chem A ; 119(9): 1486-93, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25000518

ABSTRACT

Extended and improved microwave (MW) measurements are reported for the isotopologues of piperidine. New ground state (GS) rotational constants are fitted to MW transitions with quartic centrifugal distortion constants taken from ab initio calculations. Predicate values for the geometric parameters of piperidine and cyclohexane are found from a high level of ab initio theory including adjustments for basis set dependence and for correlation of the core electrons. Equilibrium rotational constants are obtained from GS rotational constants corrected for vibration-rotation interactions and electronic contributions. Equilibrium structures for piperidine and cyclohexane are fitted by the mixed estimation method. In this method, structural parameters are fitted concurrently to predicate parameters (with appropriate uncertainties) and moments of inertia (with uncertainties). The new structures are regarded as being accurate to 0.001 Å and 0.2°. Comparisons are made between bond parameters in equatorial piperidine and cyclohexane. Another interesting result of this study is that a structure determination is an effective way to check the accuracy of the ground state experimental rotational constants.

12.
J Phys Chem B ; 118(20): 5357-64, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24754523

ABSTRACT

The mephenesin molecule (3-(2-methylphenoxy)propane-1,2-diol) serves as a test bank to explore several structural and dynamical issues, such as conformational flexibility, the orientation of the carbon linear chain relative to the benzene plane, or the effect of substituent position on the rotational barrier of a methyl group. The molecule has been studied by rotational spectroscopy in the 4-18 GHz frequency range by Fourier-transform methods in a supersonic expansion. The experiment has been backed by a previous conformational search plus optimization of the lowest energy structures by ab initio and density functional quantum calculations. The three lowest-lying conformers that can interconvert to each other by simple bond rotations have been detected in the jet. Rotational parameters for all structures have been obtained, and methyl torsional barriers have been determined for the two lowest-lying rotamers. The lowest-lying structure of mephenesin is highly planar, with all carbon atoms lying nearly in the benzene ring plane, and is stabilized by the formation of cooperative intramolecular hydrogen bonding. An estimation of the relative abundance of the detected conformers indicates that the energetically most stable conformer will have an abundance near 80% at temperatures relevant for biological activity.


Subject(s)
Mephenesin/chemistry , Fourier Analysis , Hydrogen Bonding , Microwaves , Molecular Conformation , Quantum Theory , Thermodynamics
13.
Chemphyschem ; 15(5): 918-23, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24616173

ABSTRACT

The effect of monohydration in equatorial/axial isomerism of the common motif of tropane alkaloids is investigated in a supersonic expansion by using Fourier-transform microwave spectroscopy. The rotational spectrum reveals the equatorial isomer as the dominant species in the tropinone⋅⋅⋅H2 O complex. The monohydrated complex is stabilized primarily by a moderate OH⋅⋅⋅N hydrogen bond. In addition, two CH⋅⋅⋅O weak hydrogen bonds also support this structure, blocking the water molecule and avoiding any molecular dynamics in the complex. The water molecule acts as proton donor and chooses the ternary amine group over the carbonyl group as a proton acceptor. The experimental work is supported by theoretical calculations; the accuracy of the B3LYP, M06-2X, and MP2 methods is also discussed.


Subject(s)
Alkaloids/chemistry , Tropanes/chemistry , Carbon/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Isomerism , Oxygen/chemistry , Thermodynamics
15.
Chemphyschem ; 14(9): 1830-5, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23640872

ABSTRACT

The structural isomerization of scopine into scopoline (oscine) has been observed in a supersonic jet expansion using microwave spectroscopy. The rotational spectrum evidences a single structure in the gas phase, providing a first description of the (three-ring) structurally distorted tropane in scopoline. The absence of rotational signatures of any scopine conformation suggests a practically quantitative isomerization at the vaporization temperatures of the experiment (ca. 90 °C). The determined rotational parameters of scopoline reveal the structural consequences of the intramolecular cyclation of scopine, which breaks the original epoxy group and creates a new ether bridge and a 7ß-hydroxytropane configuration. The hydroxy group further stabilizes the molecule by an O-H⋅⋅⋅N intramolecular hydrogen bond, which, in turn, forces the N-methyl group to the less stable axial form. Supporting ab initio (MP2) and DFT (B3LYP, M06-2X) calculations are included.


Subject(s)
Coumarins/chemistry , Glucosides/chemistry , Tropanes/chemistry , Gases/chemistry , Hydrogen Bonding , Isomerism , Microwaves , Rotation
16.
J Chem Phys ; 138(11): 114304, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23534636

ABSTRACT

The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two (14)N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol(-1)). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol(-1). The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H···N and C-H···O weak hydrogen bonds.

17.
J Am Chem Soc ; 135(7): 2845-52, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23346993

ABSTRACT

Fructose has been examined under isolation conditions using a combination of UV ultrafast laser vaporization and Fourier-transform microwave (FT-MW) spectroscopy. The rotational spectra for the parent, all (six) monosubstituted (13)C species, and two single D species reveal unambiguously that the free hexoketose is conformationally locked in a single dominant ß-pyranose structure. This six-membered-chair skeleton adopts a (2)C(5) configuration (equivalent to (1)C(4) in aldoses). The free-molecule structure sharply contrasts with the furanose form observed in biochemically relevant polysaccharides, like sucrose. The structure of free fructose has been determined experimentally using substitution and effective structures. The enhanced stability of the observed conformation is primarily attributed to a cooperative network of five intramolecular O-H···O hydrogen bonds and stabilization of both endo and exo anomeric effects. Breaking a single intramolecular hydrogen bond destabilizes the free molecule by more than 10 kJ mol(-1). The structural results are compared to ribose, recently examined with rotational resolution, where six different conformations coexist with similar conformational energies. In addition, several DFT and ab initio methods and basis sets are benchmarked with the experimental data.


Subject(s)
Fructose/chemistry , Quantum Theory , Molecular Conformation
18.
J Phys Chem A ; 116(41): 10099-106, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-22985102

ABSTRACT

2-Azabicyclo[2.2.1]hept-5-en-3-one (ABH or Vince lactam) and its monohydrated complex (ABH···H(2)O) have been observed in a supersonic jet by Fourier transform microwave spectroscopy. ABH is broadly used in the synthesis of therapeutic drugs, whereas the ABH···H(2)O system offers a simple model to explain the conformational preferences of water linked to a constrained peptidic bond. A single predominant form of the Vince lactam and its singly hydrated complex have been detected, determining the rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling tensor. The monohydrated complex is stabilized by two hydrogen bonds (C═O···H-O and N-H···O) closing a six-membered ring. The complexation energy has been estimated to be ∼10 kJ mol(-1) from experimental results. In addition, the observed structure in the gas phase has been compared with solid-phase diffraction data. The structural parameters and binding energies of ABH···H(2)O have also been compared with similar molecules containing peptide bonds. Ab initio (MP2) and density functional (M06-2X and B3LYP) methods have supported the experimental work, describing the rotational parameters and conformational landscape of the title compound and its singly hydrated complex.


Subject(s)
Lactams/chemistry , Peptides/chemistry , Water/chemistry , Hydrogen Bonding , Microwaves , Quantum Theory , Rotation
20.
J Phys Chem Lett ; 3(24): 3770-5, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-26291109

ABSTRACT

Tunneling effects have been measured in the pulsed jet Fourier transform microwave spectra of two isotopologues of the benzoic acid-formic acid bimolecule. The tunneling splittings are originated by the concerted proton transfer of the two carboxylic hydrogens. From the values of these splittings for the OH-OH and OD-OD species, it has been possible to model/size the barrier to the concerted double proton transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...