Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int J Biol Sci ; 20(3): 1064-1087, 2024.
Article in English | MEDLINE | ID: mdl-38322117

ABSTRACT

Alpha-ketoglutarate (αKG) emerged as a key regulator of energetic and redox metabolism in cells, affecting the immune response in various conditions. However, it remained unclear how the exogenous αKG modulates the functions of dendritic cells (DCs), key cells regulating T-cell response. Here we found that non-toxic doses of αKG display anti-inflammatory properties in human APC-T cell interaction models. In a model of monocyte-derived (mo)DCs, αKG impaired the differentiation, and the maturation of moDCs induced with lipopolysaccharide (LPS)/interferon (IFN)-γ, and decreased their capacity to induce Th1 cells. However, αKG also promoted IL-1ß secretion by mature moDCs, despite inflammasome downregulation, potentiating their Th17 polarizing capacity. αKG induced the expression of anti-oxidative enzymes and hypoxia-induced factor (HIF)-1α in moDCs, activated Akt/FoxO1 pathway and increased autophagy flux, oxidative phosphorylation (OXPHOS) and glycolysis. This correlated with a higher capacity of immature αKG-moDCs to induce Th2 cells, and conventional regulatory T cells in an indolamine-dioxygenase (IDO)-1-dependent manner. Additionally, αKG increased moDCs' capacity to induce non-conventional T regulatory (Tr)-1 and IL-10-producing CD8+T cells via up-regulated immunoglobulin-like transcript (ILT3) expression in OXPHOS-dependent manner. These results suggested that exogenous αKG-altered redox metabolism in moDCs contributed to their tolerogenic properties, which could be relevant for designing more efficient therapeutic approaches in DCs-mediated immunotherapies.


Subject(s)
Dendritic Cells , Ketoglutaric Acids , Humans , Ketoglutaric Acids/metabolism , Dendritic Cells/metabolism , Th1 Cells , Th2 Cells , Cell Differentiation , Monocytes , Oxidation-Reduction , Cells, Cultured
2.
Diagnostics (Basel) ; 14(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275476

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) was previously known as nonalcoholic fatty liver disease (NAFLD). The main characteristic of the disease is the process of long-term liver inflammation, which leads to hepatocyte damage followed by liver fibrosis and eventually cirrhosis. Additionally, these patients are at a greater risk for developing cardiovascular diseases (CVD). They have several pathophysiological mechanisms in common, primarily lipid metabolism disorders and lipotoxicity. Lipotoxicity is a factor that leads to the occurrence of heart disease and the occurrence and progression of atherosclerosis. Atherosclerosis, as a multifactorial disease, is one of the predominant risk factors for the development of ischemic heart disease. Therefore, CVD are one of the most significant carriers of mortality in patients with metabolic syndrome. So far, no pharmacotherapy has been established for the treatment of MASLD, but patients are advised to reduce their body weight and change their lifestyle. In recent years, several trials of different drugs, whose basic therapeutic indications include other diseases, have been conducted. Because it has been concluded that they can have beneficial effects in the treatment of these conditions as well, in this paper, the most significant results of these studies will be presented.

3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069152

ABSTRACT

Sitagliptin, an anti-diabetic drug, is a dipeptidyl peptidase (DPP)-4/CD26 inhibitor with additional anti-inflammatory and immunomodulatory properties. In this study, we investigated for the first time the effect of sitagliptin on the differentiation and functions of human dendritic cells generated from monocytes (MoDCs) for 4 days using the standard GM-CSF/IL-4 procedure. LPS/IFN-γ treatment for an additional 24 h was used for maturation induction of MoDCs. Sitagliptin was added at the highest non-cytotoxic concentration (500 µg/mL) either at the beginning (sita 0d protocol) or after MoDC differentiation (sita 4d protocol). Sitagliptin impaired differentiation and maturation of MoDCs as judged with the lower expression of CD40, CD83, CD86, NLRP3, and HLA-DR, retention of CD14 expression, and inhibited production of IL-ß, IL-12p70, IL-23, and IL-27. In contrast, the expression of CD26, tolerogenic DC markers (ILT4 and IDO1), and production of immunoregulatory cytokines (IL-10 and TGF-ß) were increased. Generally, the sita 0d protocol was more efficient. Sitagliptin-treated MoDCs were poorer allostimulators of T-cells in MoDC/T-cell co-culture and inhibited Th1 and Th17 but augmented Th2 and Treg responses. Tolerogenic properties of sitagliptin-treated MoDCs were additionally confirmed by an increased frequency of CD4+CD25+CD127- FoxP3+ Tregs and Tr1 cells (CD4+IL-10+FoxP3-) in MoDC/T-cell co-culture. The differentiation of IL-10+ and TGF-ß+ Tregs depended on the sitagliptin protocol used. A Western blot analysis showed that sitagliptin inhibited p65 expression of NF-kB and p38MAPK during the maturation of MoDCs. In conclusion, sitagliptin induces differentiation of tolerogenic DCs, and the effect is important when considering sitagliptin for treating autoimmune diseases and allotransplant rejection.


Subject(s)
Dipeptidyl Peptidase 4 , Interleukin-10 , Humans , Interleukin-10/metabolism , Dipeptidyl Peptidase 4/metabolism , Sitagliptin Phosphate/pharmacology , Cells, Cultured , Cell Differentiation , Monocytes/metabolism , Transforming Growth Factor beta/metabolism , Dendritic Cells , Forkhead Transcription Factors/metabolism
4.
Microorganisms ; 11(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38137988

ABSTRACT

This study aimed to explore the probiogenomic characteristics of artisanal bacteriocin-producing Enterococcus faecium BGZLM1-5 and its potential application in reducing Listeria monocytogenes in a milk model. The BGZLM1-5 strain was isolated from raw cow's milk from households in the Zlatar Mountain region. The whole genome sequencing approach and bioinformatics analyses reveal that the strain BGZLM1-5 is non-pathogenic to humans. Bacteriocin-containing supernatant was thermally stable and antimicrobial activity retained 75% of the initial activity compared with that of the control after treatment at 90 °C for 30 min. Antimicrobial activity maintained relative stability at pH 3-11 and retained 62.5% of the initial activity compared with that of the control after treatment at pH 1, 2, and 12. The highest activity of the partially purified bacteriocin was obtained after precipitation at 40% saturation with ammonium sulfate and further purification by mixing with chloroform. Applying 3% and 5% (v/v) of the bacteriocin-containing supernatant and 0.5% (v/v) of the partially purified bacteriocin decreased the viable number of L. monocytogenes ATCC19111 after three days of milk storage by 23.5%, 63.5%, and 58.9%, respectively.

5.
Int J Mol Sci ; 24(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895087

ABSTRACT

Pomegranate has shown a favorable effect on gingivitis/periodontitis, but the mechanisms involved are poorly understood. The aim of this study was to test the effect of pomegranate peel extract (PoPEx) on gingiva-derived mesenchymal stromal cells (GMSCs) under physiological and inflammatory conditions. GMSC lines from healthy (H) and periodontitis (P) gingiva (n = 3 of each) were established. The lines were treated with two non-toxic concentrations of PoPEX (low-10; high-40 µg/mL), with or without additional lipopolysaccharide (LPS) stimulation. Twenty-four genes in GMSCs involved in different functions were examined using real-time polymerase chain reaction (RT-PCR). PoPEx (mostly at higher concentrations) inhibited the basal expression of IL-6, MCP-1, GRO-α, RANTES, IP-10, HIF-1α, SDF-1, and HGF but increased the expression of IL-8, TLR3, TGF-ß, TGF-ß/LAP ratio, IDO-1, and IGFB4 genes in H-GMSCs. PoPEx increased IL-6, RANTES, MMP3, and BMP2 but inhibited TLR2 and GRO-α gene expression in P-GMSCs. LPS upregulated genes for proinflammatory cytokines and chemokines, tissue regeneration/repair (MMP3, IGFBP4, HGF), and immunomodulation (IP-10, RANTES, IDO-1, TLR3, COX-2), more strongly in P-GMSCs. PoPEx also potentiated most genes' expression in LPS-stimulated P-GMSCs, including upregulation of osteoblastic genes (RUNX2, BMP2, COL1A1, and OPG), simultaneously inhibiting cell proliferation. In conclusion, the modulatory effects of PoPEx on gene expression in GMSCs are complex and dependent on applied concentrations, GMSC type, and LPS stimulation. Generally, the effect is more pronounced in inflammation-simulating conditions.


Subject(s)
Mesenchymal Stem Cells , Periodontitis , Pomegranate , Humans , Gingiva/metabolism , Matrix Metalloproteinase 3/metabolism , Interleukin-6/metabolism , Chemokine CXCL10/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Toll-Like Receptor 3/metabolism , Transforming Growth Factor beta/metabolism , Periodontitis/metabolism , Mesenchymal Stem Cells/metabolism , Gene Expression , Cell Differentiation
6.
Front Med (Lausanne) ; 10: 1046420, 2023.
Article in English | MEDLINE | ID: mdl-36968841

ABSTRACT

Sarcoidosis is a multi-systemic disease of unknown etiology that is characterized by the formation of non-necrotizing and non-caseating granulomas in affected organs. Sarcoidosis granulomas can form in any organ, but the lungs and intrathoracic lymph nodes are the most commonly affected. Thyroid involvement in sarcoidosis is very rare, with prevalence estimates of 1-4.5% in case series of autopsied patients with systemic sarcoidosis. It is extremely rare for sarcoidosis to occur solely in the thyroid gland, but it is usually associated with the involvement of other organs, primarily the lungs and lymph nodes. Typical manifestations are diffuse goiter and solitary or multiple thyroid nodules. Thyroid function remains intact in the majority of cases, but sometimes it can result in hypothyroidism or hyperthyroidism. The diagnosis can be made after fine needle aspiration cytology, but usually it is diagnosed as an incidental finding while analyzing thyroidectomy tissue or during autopsy. Oral steroids are the cornerstone of thyroid sarcoidosis management, along with specific endocrinological treatment on some occasions. Given that we found only 71 reports of thyroid sarcoidosis available in the literature, we created and analyzed a cohort of 24 patients with thyroid sarcoidosis who were described in the literature in the 21st century and reported two additional cases of thyroid sarcoidosis.

7.
Gut Microbes ; 14(1): 2127455, 2022.
Article in English | MEDLINE | ID: mdl-36184742

ABSTRACT

Over-activated myeloid cells and disturbance in gut microbiota composition are critical factors contributing to the pathogenesis of Multiple Sclerosis (MS). Myeloid-derived suppressor cells (MDSCs) emerged as promising regulators of chronic inflammatory diseases, including autoimmune diseases. However, it remained unclear whether MDSCs display any therapeutic potential in MS, and how this therapy modulates gut microbiota composition. Here, we assessed the potential of in vitro generated bone marrow-derived MDSCs to ameliorate experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats and investigated how their application associates with the changes in gut microbiota composition. MDSCs differentiated with prostaglandin (PG)E2 (MDSC-PGE2) and control MDSCs (differentiated without PGE2) displayed strong immunosuppressive properties in vitro, but only MDSC-PGE2 significantly ameliorated EAE symptoms. This effect correlated with a reduced infiltration of Th17 and IFN-γ-producing NK cells, and an increased proportion of regulatory T cells in the CNS and spleen. Importantly, both MDSCs and MDSC-PGE2 prevented EAE-induced reduction of gut microbiota diversity, but only MDSC-PGE2 prevented the extensive alterations in gut microbiota composition following their early migration into Payer's patches and mesenteric lymph nodes. This phenomenon was related to the significant enrichment of gut microbial taxa with potential immunoregulatory properties, as well as higher levels of butyrate, propionate, and putrescine in feces. This study provides new insights into the host-microbiota interactions in EAE, suggesting that activated MDSCs could be potentially used as an efficient therapy for acute phases of MS. Considering a significant association between the efficacy of MDSC-PGE2 and gut microbiota composition, our findings also provide a rationale for further exploring the specific microbial metabolites in MS therapy.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Gastrointestinal Microbiome , Multiple Sclerosis , Myeloid-Derived Suppressor Cells , Animals , Butyrates/metabolism , Dinoprostone/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Propionates/pharmacology , Putrescine/metabolism , Rats
8.
J Extracell Vesicles ; 11(8): e12257, 2022 08.
Article in English | MEDLINE | ID: mdl-35979935

ABSTRACT

COVID-19 is characterized by a wide spectrum of disease severity, whose indicators and underlying mechanisms need to be identified. The role of extracellular vesicles (EVs) in COVID-19 and their biomarker potential, however, remains largely unknown. Aiming to identify specific EV signatures of patients with mild compared to severe COVID-19, we characterized the EV composition of 20 mild and 26 severe COVID-19 patients along with 16 sex and age-matched healthy donors with a panel of eight different antibodies by imaging flow cytometry (IFCM). We correlated the obtained data with 37 clinical, prerecorded biochemical and immunological parameters. Severe patients' sera contained increased amounts of CD13+ and CD82+ EVs, which positively correlated with IL-6-producing and circulating myeloid-derived suppressor cells (MDSCs) and with the serum concentration of proinflammatory cytokines, respectively. Sera of mild COVID-19 patients contained more HLA-ABC+ EVs than sera of the healthy donors and more CD24+ EVs than severe COVID-19 patients. Their increased abundance negatively correlated with disease severity and accumulation of MDSCs, being considered as key drivers of immunopathogenesis in COVID-19. Altogether, our results support the potential of serum EVs as powerful biomarkers for COVID-19 severity and pave the way for future investigations aiming to unravel the role of EVs in COVID-19 progression.


Subject(s)
COVID-19 , Extracellular Vesicles , Biomarkers , Cytokines , Humans , Severity of Illness Index
9.
Pharmaceutics ; 14(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35745713

ABSTRACT

Pomegranate peel extract (PoPEx) has been shown to have antioxidant and anti-inflammatory properties, but its effect on the adaptive immune system has not been sufficiently investigated. In this study, the treatment of human peripheral blood mononuclear cells (PBMC) with PoPEx (range 6.25-400 µg/mL) resulted in cytotoxicity at concentrations of 100 µg/mL and higher, due to the induction of apoptosis and oxidative stress, whereas autophagy was reduced. At non-cytotoxic concentrations, the opposite effect on these processes was observed simultaneously with the inhibition of PHA-induced PBMC proliferation and a significant decrease in the expression of CD4. PoPEx differently modulated the expression of activation markers (CD69, CD25, ICOS) and PD1 (inhibitory marker), depending on the dose and T-cell subsets. PoPEx (starting from 12.5 µg/mL) suppressed the production of Th1 (IFN-γ), Th17 (IL-17A, IL-17F, and IL-22), Th9 (IL-9), and proinflammatory cytokines (TNF-α and IL-6) in culture supernatants. Lower concentrations upregulated Th2 (IL-5 and IL-13) and Treg (IL-10) responses as well as CD4+CD25hiFoxp3+ cell frequency. Higher concentrations of PoPEx increased the frequency of IL-10- and TGF-ß-producing T-cells (much higher in the CD4+ subset). In conclusion, our study suggested for the first time complex immunoregulatory effects of PoPEx on T cells, which could assist in the suppression of chronic inflammatory and autoimmune diseases.

10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408871

ABSTRACT

Gingiva-Derived Mesenchymal Stromal Cells (GMSCs) have been shown to play an important role in periodontitis. However, how P. gingivalis, one of the key etiological agents of the disease, affects healthy (H)- and periodontitis (P)-GMSCs is unknown. To address this problem, we established 10 H-GMSC and 12 P-GMSC lines. No significant differences in morphology, differentiation into chondroblasts and adipocytes, expression of characteristic MSCS markers, including pericyte antigens NG2 and PDGFR, were observed between H- and P-GMSC lines. However, proliferation, cell size and osteogenic potential were higher in P-GMSCs, in contrast to their lower ability to suppress mononuclear cell proliferation. P. gingivalis up-regulated the mRNA expression of IL-6, IL-8, MCP-1, GRO-α, RANTES, TLR-2, HIF-1α, OPG, MMP-3, SDF-1, HGF and IP-10 in P-GMSCs, whereas only IL-6, MCP-1 and GRO-α were up-regulated in H-GMSCs. The expression of MCP-1, RANTES, IP-10 and HGF was significantly higher in P-GMSCs compared to H-GMSCs, but IDO1 was lower. No significant changes in the expression of TLR-3, TLR-4, TGF-ß, LAP, IGFBP4 and TIMP-1 were observed in both types of GMSCs. In conclusion, our results suggest that P-GMSCs retain their pro-inflammatory properties in culture, exhibit lower immunosuppressive potential than their healthy counterparts, and impaired regeneration-associated gene induction in culture. All these functions are potentiated significantly by P. gingivalis treatment.


Subject(s)
Mesenchymal Stem Cells , Periodontitis , Cell Differentiation/genetics , Cells, Cultured , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Gingiva , Humans , Interleukin-6/metabolism , Mesenchymal Stem Cells/metabolism , Periodontitis/metabolism , Porphyromonas gingivalis
11.
Front Microbiol ; 12: 759378, 2021.
Article in English | MEDLINE | ID: mdl-34790183

ABSTRACT

Cadmium (Cd) ranks seventh on the list of most significant potential threats to human health based on its suspected toxicity and the possibility of exposure to it. It has been reported that some bacterial exopolysaccharides (EPSs) have the ability to bind heavy metal ions. We therefore investigated the capacity of eight EPS-producing lactobacilli to adsorb Cd in the present study, and Lactiplantibacillus plantarum BGAN8 was chosen as the best candidate. In addition, we demonstrate that an EPS derived from BGAN8 (EPS-AN8) exhibits a high Cd-binding capacity and prevents Cd-mediated toxicity in intestinal epithelial Caco-2 cells. Simultaneous use of EPS-AN8 with Cd treatment prevents inflammation, disruption of tight-junction proteins, and oxidative stress. Our results indicate that the EPS in question has a strong potential to be used as a postbiotic in combatting the adverse effects of Cd. Moreover, we show that higher concentrations of EPS-AN8 can alleviate Cd-induced cell damage.

12.
Sci Rep ; 11(1): 21258, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711881

ABSTRACT

The host-microbiota cross-talk represents an important factor contributing to innate immune response and host resistance during infection. It has been shown that probiotic lactobacilli exhibit the ability to modulate innate immunity and enhance pathogen elimination. Here we showed that heat-inactivated probiotic strain Lactobacillus curvatus BGMK2-41 stimulates immune response and resistance of the Caenorhabditis elegans against Staphylococcus aureus and Pseudomonas aeruginosa. By employing qRT-PCR and western blot analysis we showed that heat-inactivated BGMK2-41 activated PMK-1/p38 MAPK immunity pathway which prolongs the survival of C. elegans exposed to pathogenic bacteria in nematode killing assays. The C. elegans pmk-1 mutant was used to demonstrate a mechanistic basis for the antimicrobial potential of BGMK2-41, showing that BGMK2-41 upregulated PMK-1/p38 MAPK dependent transcription of C-type lectins, lysozymes and tight junction protein CLC-1. Overall, this study suggests that PMK-1/p38 MAPK-dependent immune regulation by BGMK2-41 is essential for probiotic-mediated C. elegans protection against gram-positive and gram-negative bacteria and could be further explored for development of probiotics with the potential to increase resistance of the host towards pathogens.


Subject(s)
Bacterial Infections/immunology , Bacterial Infections/microbiology , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/physiology , Host-Pathogen Interactions/immunology , MAP Kinase Signaling System , Probiotics , Animals , Bacterial Infections/mortality , Biomarkers , Immunity, Innate , Immunomodulation , Probiotics/administration & dosage , Survival Rate
13.
Gut Microbes ; 13(1): 1-20, 2021.
Article in English | MEDLINE | ID: mdl-33970783

ABSTRACT

Although promising for active immunization in cancer patients, dendritic cells (DCs) vaccines generated in vitro display high inter-individual variability in their immunogenicity, which mostly limits their therapeutic efficacy. Gut microbiota composition is a key emerging factor affecting individuals' immune responses, but it is unknown how it affects the variability of donors' precursor cells to differentiate into immunogenic DCs in vitro. By analyzing gut microbiota composition in 14 healthy donors, along with the phenotype and cytokines production by monocyte-derived DCs, we found significant correlations between immunogenic properties of DC and microbiota composition. Namely, donors who had higher α-diversity of gut microbiota and higher abundance of short-chain fatty acid (SCFAs) and SCFA-producing bacteria in feces, displayed lower expression of CD1a on immature (im)DC and higher expression of ILT-3, costimulatory molecules (CD86, CD40) proinflammatory cytokines (TNF-α, IL-6, IL-8) and IL-12p70/IL-10 ratio, all of which correlated with their lower maturation potential and immunogenicity upon stimulation with LPS/IFNγ, a well-known Th1 polarizing cocktail. In contrast, imDCs generated from donors with lower α-diversity and higher abundance of Bifidobacterium and Collinsella in feces displayed higher CD1a expression and higher potential to up-regulate CD86 and CD40, increase TNF-α, IL-6, IL-8 production, and IL-12p70/IL-10 ratio upon stimulation. These results emphasize the important role of gut microbiota on the capacity of donor precursor cells to differentiate into immunogenic DCs suitable for cancer therapy, which could be harnessed for improving the actual and future DC-based cancer therapies.


Subject(s)
Bacteria/isolation & purification , Cell Differentiation , Dendritic Cells/cytology , Feces/microbiology , Gastrointestinal Microbiome , Monocytes/cytology , Adult , Bacteria/classification , Bacteria/genetics , Cells, Cultured , Dendritic Cells/immunology , Feces/chemistry , Female , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Male , Middle Aged , Monocytes/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Young Adult
14.
Front Immunol ; 12: 614599, 2021.
Article in English | MEDLINE | ID: mdl-33692788

ABSTRACT

Widespread coronavirus disease (COVID)-19 is causing pneumonia, respiratory and multiorgan failure in susceptible individuals. Dysregulated immune response marks severe COVID-19, but the immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, which is hampering the development of efficient treatments. Here we analyzed ~140 parameters of cellular and humoral immune response in peripheral blood of 41 COVID-19 patients and 16 age/gender-matched healthy donors by flow-cytometry, quantitative PCR, western blot and ELISA, followed by integrated correlation analyses with ~30 common clinical and laboratory parameters. We found that lymphocytopenia in severe COVID-19 patients (n=20) strongly affects T, NK and NKT cells, but not B cells and antibody production. Unlike increased activation of ICOS-1+ CD4+ T cells in mild COVID-19 patients (n=21), T cells in severe patients showed impaired activation, low IFN-γ production and high functional exhaustion, which correlated with significantly down-regulated HLA-DR expression in monocytes, dendritic cells and B cells. The latter phenomenon was followed by lower interferon responsive factor (IRF)-8 and autophagy-related genes expressions, and the expansion of myeloid derived suppressor cells (MDSC). Intriguingly, PD-L1-, ILT-3-, and IDO-1-expressing monocytic MDSC were the dominant producers of IL-6 and IL-10, which correlated with the increased inflammation and accumulation of regulatory B and T cell subsets in severe COVID-19 patients. Overall, down-regulated IRF-8 and autophagy-related genes expression, and the expansion of MDSC subsets could play critical roles in dysregulating T cell response in COVID-19, which could have large implications in diagnostics and design of novel therapeutics for this disease.


Subject(s)
Autophagy-Related Proteins/biosynthesis , COVID-19/immunology , Myeloid-Derived Suppressor Cells/immunology , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Aged, 80 and over , Autophagy/immunology , Autophagy-Related Proteins/immunology , Autophagy-Related Proteins/metabolism , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Cohort Studies , Female , Humans , Immunity , Lymphocyte Activation , Male , Middle Aged , Monocytes/immunology , Myeloid-Derived Suppressor Cells/pathology , T-Lymphocyte Subsets/pathology , T-Lymphocytes/immunology
15.
Aging (Albany NY) ; 13(6): 8040-8054, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33770762

ABSTRACT

Gut homeostasis is maintained by the close interaction between commensal intestinal microbiota and the host, affecting the most complex physiological processes, such as aging. Some commensal bacteria with the potential to promote healthy aging arise as attractive candidates for the development of pro-longevity probiotics. Here, we showed that heat-inactivated human commensal Lactobacillus fermentum BGHV110 (BGHV110) extends the lifespan of Caenorhabditis elegans and improves age-related physiological features, including locomotor function and lipid metabolism. Mechanistically, we found that BGHV110 promotes HLH-30/TFEB-dependent autophagy to delay aging, as longevity assurance was completely abolished in the mutant lacking HLH-30, a major autophagy regulator in C. elegans. Moreover, we observed that BGHV110 partially decreased the content of lipid droplets in an HLH-30-dependent manner and, at the same time, slightly increased mitochondrial activity. In summary, this study demonstrates that specific factors from commensal bacteria can be used to exploit HLH-30/TFEB-mediated autophagy in order to promote longevity and fitness of the host.


Subject(s)
Aging/metabolism , Autophagy/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Longevity/physiology , Animals , Caenorhabditis elegans/microbiology , Homeostasis/physiology , Limosilactobacillus fermentum , Lipid Metabolism/physiology , Mitochondria/metabolism
16.
Microorganisms ; 8(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076224

ABSTRACT

Yogurt is a traditional fermented dairy product, prepared with starter cultures containing Streptococcus thermophilus and Lactobacillus bulgaricus that has gained widespread consumer acceptance as a healthy food. It is widely accepted that yogurt cultures have been recognized as probiotics, due to their beneficial effects on human health. In this study, we have characterized technological and health-promoting properties of autochthonous strains S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 isolated from artisanal sour milk and yogurt, respectively, in order to be used as functional yogurt starter cultures. Both BGKMJ1-36 and BGVLJ1-21 strains have the ability to form curd after five hours at 42 °C, hydrolyze αs1-, ß-, and κ- casein, and to show antimicrobial activity toward Listeria monocytogenes. The strain BGKMJ1-36 produces exopolysaccharides important for rheological properties of the yogurt. The colonies of BGKMJ1-36 and BGVLJ1-21 strains that successfully survived transit of the yogurt through simulated gastrointestinal tract conditions have been tested for adhesion to intestinal epithelial Caco-2 cells. The results reveal that both strains adhere to Caco-2 cells and significantly upregulate the expression of autophagy-, tight junction proteins-, and anti-microbial peptides-related genes. Hence, both strains may be interesting for use as a novel functional starter culture for production of added-value yogurt with health-promoting properties.

17.
Sci Rep ; 10(1): 1347, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992761

ABSTRACT

The characterization of mechanisms involved in the positive effects of probiotic bacteria in various pathophysiological conditions is a prerogative for their safe and efficient application in biomedicine. We have investigated the immunological effects of live bacteria-free supernatant collected from GABA-producing Lactobacillus brevis BGZLS10-17 on Concanavalin A-stimulated mesenteric lymph node cells (MLNC), an in vitro model of activated immune cells. We have shown that GABA containing and GABA-free supernatant of Lactobacillus brevis BGZLS10-17 have strong immunoregulatory effects on MLNC. Further, GABA produced by this strain exhibit additional inhibitory effects on proliferation, IFN-γ and IL-17 production by MLNC, and the expression of MHCII and CD80 on antigen presenting cells. At the other hand, GABA-containing supernatants displayed the strongest stimulatory effects on the expression of immunoregulatory molecules, such as Foxp3+, IL-10, TGF-ß, CTLA4 and SIRP-α. By looking for the mechanisms of actions, we found that supernatants produced by BGZLS10-17 induce autophagy in different MLNC, such as CD4+ and CD8+ T lymphocytes, NK and NKT cells, as well as antigen presenting cells. Further, we showed that the stimulation of Foxp3+, IL-10 and TGF-ß expression by BGZLS10-17 produced GABA is completely mediated by the induction of ATG5 dependent autophagy, and that other molecules in the supernatants display GABA-, ATG5-, Foxp3+-, IL-10- and TGF-ß- independent, immunoregulatory effects.


Subject(s)
Autophagy-Related Protein 5/metabolism , Autophagy , Host-Pathogen Interactions/immunology , Immunomodulation , Levilactobacillus brevis/immunology , gamma-Aminobutyric Acid/metabolism , Animals , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Culture Media, Conditioned , Energy Metabolism , Female , Levilactobacillus brevis/metabolism , Probiotics , Rats , Signal Transduction , gamma-Aminobutyric Acid/pharmacology
18.
Front Immunol ; 9: 942, 2018.
Article in English | MEDLINE | ID: mdl-29770137

ABSTRACT

Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.


Subject(s)
Disease Resistance , Encephalomyelitis, Autoimmune, Experimental/etiology , Gastrointestinal Microbiome , Animals , Anti-Bacterial Agents/pharmacology , Cytokines/metabolism , Disease Models, Animal , Disease Resistance/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/therapy , Fecal Microbiota Transplantation/methods , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Metagenome , Metagenomics/methods , Peyer's Patches/immunology , Peyer's Patches/metabolism , Rats
19.
Curr Stem Cell Res Ther ; 11(1): 51-65, 2016.
Article in English | MEDLINE | ID: mdl-26337378

ABSTRACT

Mesenchymal stem/stromal cells (MSCs, having both multi-potent differentiation potential and prominent immunomodulatory properties, are seen as a very powerful tool for the therapy of diseases characterized by tissue damage and/or unregulated immune responses. Dendritic cells (DCs are key immunoregulatory cells at the crossroads between immunity and tolerance, able to fine-tune the whole immune response via regulation of adaptive immunity. Therefore, untangling the complex interactions between DCs and MSCs is crucial for understanding various mechanisms involved in the pathogenesis of immune-related diseases and for the discovery of new therapeutic targets for advanced treatment procedures. From this perspective, we reviewed the data that have been obtained to date regarding the complex effects of MSCs on DC development and functions, delineating the abundant mechanisms involved in these interactions. Additionally, we have pointed out to additional mechanisms of MSC/DC cross-talk that have not been directly proven, but that could have a significant role, not only in DC functions and the maintenance of immune homeostasis, but also in migration, differentiation and the functions of MSCs. For now, much more is known about the influence of MSCs on DCs than vice versa, so more studies should be done in order to fully understand this cross-talk.


Subject(s)
Cell Communication , Dendritic Cells/immunology , Mesenchymal Stem Cells/physiology , Animals , Cell Differentiation , Cell Movement , Dendritic Cells/physiology , Humans , Immunity , Mesenchymal Stem Cells/immunology , Signal Transduction
20.
Cytotherapy ; 17(12): 1763-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26455276

ABSTRACT

BACKGROUND AIMS: Because of the labor-intensive and time-consuming conventional protocols for the generation of dendritic cells (DCs) as the most promising tools for anti-cancer therapy that enable the induction of a T-helper (Th)1-mediated anti-tumor immune response, the use of short-term protocols has been proposed. However, data on the applicability of such protocols in cancer immunotherapy are quite limited. METHODS: We compared the phenotypic and functional capability of fast DCs (fDCs) differentiated for 24 h and then matured for 48 h with Poly (I:C), a strong Th1-promoting agent, with donor-matched conventional DCs (cDCs) differentiated for 5 days and matured likewise. RESULTS: Of 12 donors tested, we identified seven whose monocytes failed to develop into immunogenic DCs through the use of fDC protocol, on the basis of incomplete downregulation of CD14, low expression of CD1a and macrophage-like morphology. Such fDCs have significantly lower expression of CD83, CD86, CCR7 and CD40, weaker allo-stimulatory Th1- and Th17-polarizing capacity caused by poor production of interleukin (IL)-12p70 and IL-23 and high production of IL-10, and prominent Th2-polarizing capacity, compared with donor-matched cDCs. Furthermore, such fDCs had tolerogenic properties as judged by higher expression of indolamine dioxigenase-3, IDO-1 and IL-1ß and induction of a higher percentage of CD4(+)CD25(+)FoxP3(+) T cells. These findings correlated with increased transforming growth factor (TGF)-ß production by fDC-primed CD3(+)T cells and their stronger anti-proliferative capacity. CONCLUSIONS: We emphasize that although fDCs could probably be applied as an alternative to cDCs for cancer therapy, the fDC protocol should not be applied to donors whose DCs acquire tolerogenic capabilities.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance/immunology , Immunotherapy/methods , Lymphocyte Activation/immunology , Poly I-C/pharmacology , T-Lymphocytes/immunology , Antigens, CD1/metabolism , Cell Differentiation/immunology , Dendritic Cells/cytology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Interleukin-10/metabolism , Interleukin-12/metabolism , Interleukin-23/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Lipopolysaccharide Receptors/metabolism , Lymphocyte Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...