Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 297: 120711, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942099

ABSTRACT

The ability to perceive pain presents an interesting evolutionary advantage to adapt to an ever-changing environment. However, in the case of chronic pain (CP), pain perception hinders the capacity of the system to adapt to changing sensory environments. Similar to other chronic perceptual disorders, CP is also proposed to be a maladaptive compensation to aberrant sensory predictive processing. The local-global oddball paradigm relies on learning hierarchical rules and processing environmental irregularities at a local and global level. Prediction errors (PE) between actual and predicted input typically trigger an update of the forward model to limit the probability of encountering future PEs. It has been hypothesised that CP hinders forward model updating, reflected in increased local deviance and decreased global deviance. In the present study, we used the local-global paradigm to examine how CP influences hierarchical learning relative to healthy controls. As hypothesised, we observed that deviance in the stimulus characteristics evoked heightened local deviance and decreased global deviance of the stimulus-driven PE. This is also accompanied by respective changes in theta phase locking that is correlated with the subjective pain perception. Changes in the global deviant in the stimulus-driven-PE could also be explained by dampened attention-related responses. Changing the context of the auditory stimulus did not however show a difference in the context-driven PE. These findings suggest that CP is accompanied by maladaptive forward model updating where the constant presence of pain perception disrupts local deviance in non-nociceptive domains. Furthermore, we hypothesise that the auditory-processing based biomarker identified here could be a marker of domain-general dysfunction that could be confirmed by future research.

2.
J Neurophysiol ; 131(6): 1311-1327, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38718414

ABSTRACT

Tinnitus is the perception of a continuous sound in the absence of an external source. Although the role of the auditory system is well investigated, there is a gap in how multisensory signals are integrated to produce a single percept in tinnitus. Here, we train participants to learn a new sensory environment by associating a cue with a target signal that varies in perceptual threshold. In the test phase, we present only the cue to see whether the person perceives an illusion of the target signal. We perform two separate experiments to observe the behavioral and electrophysiological responses to the learning and test phases in 1) healthy young adults and 2) people with continuous subjective tinnitus and matched control subjects. We observed that in both parts of the study the percentage of false alarms was negatively correlated with the 75% detection threshold. Additionally, the perception of an illusion goes together with increased evoked response potential in frontal regions of the brain. Furthermore, in patients with tinnitus, we observe no significant difference in behavioral or evoked response in the auditory paradigm, whereas patients with tinnitus were more likely to report false alarms along with increased evoked activity during the learning and test phases in the visual paradigm. This emphasizes the importance of integrity of sensory pathways in multisensory integration and how this process may be disrupted in people with tinnitus. Furthermore, the present study also presents preliminary data supporting evidence that tinnitus patients may be building stronger perceptual models, which needs future studies with a larger population to provide concrete evidence on.NEW & NOTEWORTHY Tinnitus is the continuous phantom perception of a ringing in the ears. Recently, it has been suggested that tinnitus may be a maladaptive inference of the brain to auditory anomalies, whether they are detected or undetected by an audiogram. The present study presents empirical evidence for this hypothesis by inducing an illusion in a sensory domain that is damaged (auditory) and one that is intact (visual). It also presents novel information about how people with tinnitus process multisensory stimuli in the audio-visual domain.


Subject(s)
Auditory Perception , Bayes Theorem , Illusions , Tinnitus , Humans , Tinnitus/physiopathology , Pilot Projects , Male , Female , Adult , Auditory Perception/physiology , Illusions/physiology , Visual Perception/physiology , Young Adult , Electroencephalography , Acoustic Stimulation , Cues
SELECTION OF CITATIONS
SEARCH DETAIL
...