Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144980

ABSTRACT

A one-pot green method for aqueous synthesis of fluorescent copper sulphide nanoparticles (NPs) was developed. The reaction was carried out in borax-citrate buffer at physiological pH, 37 °C, aerobic conditions and using Cu (II) and the biological thiol cysteine. NPs exhibit green fluorescence with a peak at 520 nm when excited at 410 nm and an absorbance peak at 410 nm. A size between 8-12 nm was determined by dynamic light scattering and transmission electron microscopy. An interplanar atomic distance of (3.5 ± 0.1) Å and a hexagonal chalcocite crystalline structure (ßCh) of Cu2S NPs were also determined (HR-TEM). Furthermore, FTIR analyses revealed a Cu-S bond and the presence of organic molecules on NPs. Regarding toxicity, fluorescent Cu2S NPs display high biocompatibility when tested in cell lines and bacterial strains. Electrocatalytic activity of Cu2S NPs as counter electrodes was evaluated, and the best value of charge transfer resistance (Rct) was obtained with FTO/Cu2S (four layers). Consequently, the performance of biomimetic Cu2S NPs as counter electrodes in photovoltaic devices constructed using different sensitizers (ruthenium dye or CdTe NPs) and electrolytes (S2-/Sn2- or I-/I3-) was successfully checked. Altogether, novel characteristics of copper sulfide NPs such as green, simple, and inexpensive production, spectroscopic properties, high biocompatibility, and particularly their electrochemical performance, validate its use in different biotechnological applications.

2.
Microorganisms ; 8(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349316

ABSTRACT

In this study, we introduce a biological method for the production of ternary Quantum Dots (QDs): complex nanostructures with tunable optical and structural properties that utilizes post-synthesis modifications through cation exchange. This versatile in-situ cation exchange method being reported for the first time shows great potential for extending the scope of microbial synthesis. By using this bacterial-based method, we easily synthesize and purify CdS, CdSAg, and Ag2S nanocrystals of a size below 15 nm and with variable morphologies that exhibit fluorescence emissions covering a broad spectral range (from 400 to 800 nm). Energy-dispersive X-ray spectroscopy (EDS) results indicate the partial replacement of Cd2+ by Ag+ when AgNO3 concentration is increased. This replacement produces CdSAg ternary QDs hetero-structures with high stability, fluorescence in the NIR-I (700 - 800 nm), and 36.13% quantum yield. Furthermore, this reaction can be extended for the production of soluble Ag2S nanoparticles (NPs) without any traces of Cd. QDs biosynthesized through this cation exchange process display very low toxicity when tested in bacterial or human cell lines. Biosynthesized ternary hetero-structures were used as red fluorescent dyes to label HeLa cells in confocal microscopy studies, which validates its use in bioimaging applications in the near infrared region. In addition, the application of biologically-produced cadmium NPs in solar cells is reported for the first time. The three biosynthesized QDs were successfully used as photosensitizers, where the CdSAg QDs show the best photovoltaic parameters. Altogether, obtained results validate the use of bacterial cells for the controlled production of nanomaterials with properties that allow their application in diverse technologies. We developed a simple biological process for obtaining tunable Quantum Dots (QDs) with different metal compositions through a cation exchange process. Nanoparticles (NPs) are produced in the extracellular space of bacterial cells exposed to cysteine and CdCl2 in a reaction that depends on S2- generation mediated by cysteine desulfhydrase enzymes and uses cellular biomolecules to stabilize the nanoparticle. Using this extracellular approach, water-soluble fluorescent CdS, CdSAg, and Ag2S Quantum Dots with a tunable emission ranging from 400 to 800 nm were generated. This is the first study reporting the use of microorganisms to produce tunable ternary QDs and the first time that a cation exchange process mediated by cells is described. Obtained results validate the use of biological synthesis to produce NPs with new characteristics and opens a completely new research field related to the use of microorganisms to synthesize complex NPs that are difficult to obtain with regular chemical methods.

3.
Front Microbiol ; 10: 1587, 2019.
Article in English | MEDLINE | ID: mdl-31354676

ABSTRACT

In the present work, we report the use of bacterial cells for the production of CdS/CdSe Core/Shell quantum dots (QDs), a complex nanostructure specially designed to improve their performance as photosensitizer in photovoltaic devices. The method requires the incorporation of L-cysteine, CdCl2 and Na2SeO3 to Escherichia coli cultures and allows a tight control of QDs properties. The obtained CdS/CdSe QDs were photophysically and structurally characterized. When compared to CdS QDs, the classical shift in the UV-visible spectra of Core/Shell nanostructures was observed in CdS/CdSe QDs. The nanosize, structure, and composition of Core/Shell QDs were confirmed by TEM and EDS analysis. QDs presented a size of approximately 12 nm (CdS) and 17 nm (CdS/CdSe) as determined by dynamic light scattering (DLS), whereas the fourier transform infrared (FTIR) spectra allowed to distinguish the presence of different biomolecules bound to both types of nanoparticles. An increased photostability was observed in CdS/CdSe nanoparticles when compared to CdS QDs. Finally, biosynthesized CdS/CdSe Core/Shell QDs were used as photosensitizers for quantum dots sensitized solar cells (QDSSCs) and their photovoltaic parameters determined. As expected, the efficiency of solar cells sensitized with biological CdS/CdSe QDs increased almost 2.5 times when compared to cells sensitized with CdS QDs. This work is the first report of biological synthesis of CdS/CdSe Core/Shell QDs using bacterial cells and represents a significant contribution to the development of green and low-cost photovoltaic technologies.

4.
PLoS One ; 14(5): e0215945, 2019.
Article in English | MEDLINE | ID: mdl-31042762

ABSTRACT

The composition of the vaginal microbiome, including both the presence of pathogens involved in sexually transmitted infections (STI) as well as commensal microbiota, has been shown to have important associations for a woman's reproductive and general health. Currently, healthcare providers cannot offer comprehensive vaginal microbiome screening, but are limited to the detection of individual pathogens, such as high-risk human papillomavirus (hrHPV), the predominant cause of cervical cancer. There is no single test on the market that combines HPV, STI, and microbiome screening. Here, we describe a novel inclusive vaginal health assay that combines self-sampling with sequencing-based HPV detection and genotyping, vaginal microbiome analysis, and STI-associated pathogen detection. The assay includes genotyping and detection of 14 hrHPV types, 5 low-risk HPV types (lrHPV), as well as the relative abundance of 31 bacterial taxa of clinical importance, including Lactobacillus, Sneathia, Gardnerella, and 3 pathogens involved in STI, with high sensitivity, specificity, and reproducibility. For each of these taxa, reference ranges were determined in a group of 50 self-reported healthy women. The HPV sequencing portion of the test was evaluated against the digene High-Risk HPV HC2 DNA test. For hrHPV genotyping, agreement was 95.3% with a kappa of 0.804 (601 samples); after removal of samples in which the digene hrHPV probe showed cross-reactivity with lrHPV types, the sensitivity and specificity of the hrHPV genotyping assay were 94.5% and 96.6%, respectively, with a kappa of 0.841. For lrHPV genotyping, agreement was 93.9% with a kappa of 0.788 (148 samples), while sensitivity and specificity were 100% and 92.9%, respectively. This novel assay could be used to complement conventional cervical cancer screening, because its self-sampling format can expand access among women who would otherwise not participate, and because of its additional information about the composition of the vaginal microbiome and the presence of pathogens.


Subject(s)
Microbiota , Papillomaviridae/genetics , Papillomavirus Infections/diagnosis , Sexually Transmitted Diseases/diagnosis , Vagina/virology , Adolescent , Adult , Capsid Proteins/genetics , DNA, Viral/genetics , DNA, Viral/isolation & purification , Female , Gardnerella/genetics , Gardnerella/isolation & purification , Genotype , Humans , Lactobacillus/genetics , Lactobacillus/isolation & purification , Limit of Detection , Middle Aged , Oncogene Proteins, Viral/genetics , Papillomaviridae/isolation & purification , Papillomavirus Infections/virology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Reproducibility of Results , Sensitivity and Specificity , Sexually Transmitted Diseases/virology , Vagina/microbiology , Young Adult
5.
J Biotechnol ; 264: 29-37, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29056529

ABSTRACT

Microbial polymers and nanomaterials production is a promising alternative for sustainable bioeconomics. To this end, we used Pseudomonas putida KT2440 as a cell factory in batch cultures to coproduce two important nanotechnology materials- medium-chain-length (MCL)-polyhydroxyalkanoates (PHAs) and CdS fluorescent nanoparticles (i.e. quantum dots [QDots]). Due to high cadmium resistance, biomass and PHA yields were almost unaffected by coproduction conditions. Fluorescent nanocrystal biosynthesis was possible only in presence of cysteine. Furthermore, this process took place exclusively in the cell, displaying the classical emission spectra of CdS QDots under UV-light exposure. Cell fluorescence, zeta potential values, and particles size of QDots depended on cadmium concentration and exposure time. Using standard PHA-extraction procedures, the biosynthesized QDots remained associated with the biomass, and the resulting PHAs presented no traces of CdS QDots. Transmission electron microscopy located the synthesized PHAs in the cell cytoplasm, whereas CdS nanocrystals were most likely located within the periplasmic space, exhibiting no apparent interaction. This is the first report presenting the microbial coproduction of MCL-PHAs and CdS QDots in P. putida KT2440, thus constituting a foundation for further bioprocess developments and strain engineering towards the efficient synthesis of these highly relevant bioproducts for nanotechnology.


Subject(s)
Cadmium Compounds/metabolism , Polyhydroxyalkanoates/metabolism , Pseudomonas putida/metabolism , Quantum Dots/metabolism , Sulfides/metabolism , Cadmium Compounds/chemistry , Particle Size , Polyhydroxyalkanoates/analysis , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/isolation & purification , Quantum Dots/chemistry , Sulfides/chemistry
6.
BMC Genomics ; 15: 1099, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25496196

ABSTRACT

BACKGROUND: Most semiconductor nanoparticles used in biomedical applications are made of heavy metals and involve synthetic methods that require organic solvents and high temperatures. This issue makes the development of water-soluble nanoparticles with lower toxicity a major topic of interest. In a previous work our group described a biomimetic method for the aqueous synthesis of CdTe-GSH Quantum Dots (QDs) using biomolecules present in cells as reducing and stabilizing agents. This protocol produces nanoparticles with good fluorescent properties and less toxicity than those synthesized by regular chemical methods. Nevertheless, biomimetic CdTe-GSH nanoparticles still display some toxicity, so it is important to know in detail the effects of these semiconductor nanoparticles on cells, their levels of toxicity and the strategies that cells develop to overcome it. RESULTS: In this work, the response of E. coli exposed to different sized-CdTe-GSH QDs synthesized by a biomimetic protocol was evaluated through transcriptomic, biochemical, microbiological and genetic approaches. It was determined that: i) red QDs (5 nm) display higher toxicity than green (3 nm), ii) QDs mainly induce expression of genes involved with Cd+2 stress (zntA and znuA) and tellurium does not contribute significantly to QDs-mediated toxicity since cells incorporate low levels of Te, iii) red QDs also induce genes related to oxidative stress response and membrane proteins, iv) Cd2+ release is higher in red QDs, and v) QDs render the cells more sensitive to polymyxin B. CONCLUSION: Based on the results obtained in this work, a general model of CdTe-GSH QDs toxicity in E. coli is proposed. Results indicate that bacterial toxicity of QDs is mainly associated with cadmium release, oxidative stress and loss of membrane integrity. The higher toxicity of red QDs is most probably due to higher cadmium content and release from the nanoparticle as compared to green QDs. Moreover, QDs-treated cells become more sensitive to polymyxin B making these biomimetic QDs candidates for adjuvant therapies against bacterial infections.


Subject(s)
Cadmium Compounds/chemistry , Escherichia coli/drug effects , Glutathione/chemistry , Quantum Dots/toxicity , Tellurium/chemistry , Anti-Bacterial Agents/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/toxicity , Cell Wall/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Oligonucleotide Array Sequence Analysis , Oxidative Stress/drug effects , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism , Transcriptome
7.
Microb Cell Fact ; 13(1): 90, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-25027643

ABSTRACT

BACKGROUND: One of the major challenges of nanotechnology during the last decade has been the development of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they are simple, safe and eco-friendly. RESULTS: In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate was able to produce TiO2 nanoparticles at 37 ° C in the presence of titanyl hydroxide. Biosynthesized nanoparticles have anatase polymorphic structure, spherical morphology, polydisperse size (40-60 nm) and an organic shell as determined by UV-vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly than chemically produced TiO2. CONCLUSIONS: Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures represents a novel alternative for the construction of green solar cells.


Subject(s)
Bacillus/metabolism , Nanoparticles/chemistry , Quantum Dots/metabolism , Solar Energy , Titanium/metabolism , Electric Power Supplies , Particle Size , Quantum Dots/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...