Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802508

ABSTRACT

Interoceptive fear, which is shaped by associative threat learning and memory processes, plays a central role in abnormal interoception and psychiatric comorbidity in conditions of the gut-brain axis. Although animal and human studies support that acute inflammation induces brain alterations in the central fear network, mechanistic knowledge in patients with chronic inflammatory conditions remains sparse. We implemented a translational fear conditioning paradigm to elucidate central fear network reactivity in patients with quiescent inflammatory bowel disease (IBD), compared to patients with irritable bowel syndrome (IBS) and healthy controls (HC). Using functional magnetic resonance imaging, conditioned differential neural responses within regions of the fear network were analyzed during acquisition and extinction learning. In contrast to HC and IBS, IBD patients demonstrated distinctly altered engagement of key regions of the central fear network, including amygdala and hippocampus, during differential interoceptive fear learning, with more pronounced responses to conditioned safety relative to pain-predictive cues. Aberrant hippocampal responses correlated with chronic stress exclusively in IBD. During extinction, differential engagement was observed in IBD compared to IBS patients within amygdala, ventral anterior insula, and thalamus. No group differences were found in changes of cue valence as a behavioral measure of fear acquisition and extinction. Together, the disease-specific alterations in neural responses during interoceptive fear conditioning in quiescent IBD suggest persisting effects of recurring intestinal inflammation on central fear network reactivity. Given the crucial role of interoceptive fear in abnormal interoception, these findings point towards inflammation-related brain alterations as one trajectory to bodily symptom chronicity and psychiatric comorbidity. Patients with inflammatory conditions of the gut-brain axis may benefit from tailored treatment approaches targeting maladaptive interoceptive fear.

2.
J Crohns Colitis ; 17(10): 1639-1651, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37161902

ABSTRACT

BACKGROUND AND AIMS: Despite relevance to pain chronicity, disease burden, and treatment, mechanisms of pain perception for different types of acute pain remain incompletely understood in patients with inflammatory bowel disease [IBD]. Building on experimental research across pain modalities, we herein addressed behavioural and neural correlates of visceral versus somatic pain processing in women with quiescent ulcerative colitis [UC] compared to irritable bowel syndrome [IBS] as a patient control group and healthy women [HC]. METHODS: Thresholds for visceral and somatic pain were assessed with rectal distensions and cutaneous thermal pain, respectively. Using functional magnetic resonance imaging, neural and behavioural responses to individually calibrated and intensity-matched painful stimuli from both modalities were compared. RESULTS: Pain thresholds were comparable across groups, but visceral thresholds correlated with gastrointestinal symptom severity and chronic stress burden exclusively within UC. Upon experience of visceral and somatic pain, both control groups demonstrated enhanced visceral pain-induced neural activation and greater perceived pain intensity, whereas UC patients failed to differentiate between pain modalities at both behavioural and neural levels. CONCLUSIONS: When confronted with acute pain from multiple bodily sites, UC patients' responses are distinctly altered. Their failure to prioritise pain arising from the viscera may reflect a lack of adaptive behavioural flexibility, possibly resulting from long-lasting central effects of repeated intestinal inflammatory insults persisting during remission. The role of psychological factors, particularly chronic stress, in visceral sensitivity and disease-specific alterations in the response to acute pain call for dedicated mechanistic research as a basis for tailoring interventions for intestinal and extraintestinal pain symptoms in IBD.


Subject(s)
Acute Pain , Colitis, Ulcerative , Inflammatory Bowel Diseases , Irritable Bowel Syndrome , Nociceptive Pain , Humans , Female , Irritable Bowel Syndrome/complications , Colitis, Ulcerative/complications
3.
Front Neurol ; 12: 733035, 2021.
Article in English | MEDLINE | ID: mdl-34744973

ABSTRACT

Structural brain alterations in chronic pain conditions remain incompletely understood, especially in chronic visceral pain. Patients with chronic-inflammatory or functional bowel disorders experience recurring abdominal pain in concert with other gastrointestinal symptoms, such as altered bowel habits, which are often exacerbated by stress. Despite growing interest in the gut-brain axis and its underlying neural mechanisms in health and disease, abnormal brain morphology and possible associations with visceral symptom severity and chronic stress remain unclear. We accomplished parallelized whole-brain voxel-based morphometry analyses in two patient cohorts with chronic visceral pain, i.e., ulcerative colitis in remission and irritable bowel syndrome, and healthy individuals. In addition to analyzing changes in gray matter volume (GMV) in each patient cohort vs. age-matched healthy controls using analysis of covariance (ANCOVA), multiple regression analyses were conducted to assess correlations between GMV and symptom severity and chronic stress, respectively. ANCOVA revealed reduced GMV in frontal cortex and anterior insula in ulcerative colitis compared to healthy controls, suggesting alterations in the central autonomic and salience networks, which could however not be confirmed in supplemental analyses which rigorously accounted for group differences in the distribution of sex. In irritable bowel syndrome, more widespread differences from healthy controls were observed, comprising both decreased and increased GMV within the sensorimotor, central executive and default mode networks. Associations between visceral symptoms and GMV within frontal regions were altered in both patient groups, supporting a role of the central executive network across visceral pain conditions. Correlations with chronic stress, on the other hand, were only found for irritable bowel syndrome, encompassing numerous brain regions and networks. Together, these findings complement and expand existing brain imaging evidence in chronic visceral pain, supporting partly distinct alterations in brain morphology in patients with chronic-inflammatory and functional bowel disorders despite considerable overlap in symptoms and comorbidities. First evidence pointing to correlations with chronic stress in irritable bowel syndrome inspires future translational studies to elucidate the mechanisms underlying the interconnections of stress, visceral pain and neural mechanisms of the gut-brain axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...