Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 537(7618): 84-88, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27409814

ABSTRACT

The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.


Subject(s)
Cold Temperature , Hot Temperature , Laser Therapy/adverse effects , Laser Therapy/methods , Lasers/adverse effects , Animals , Brain/surgery , Cattle , Cornea/surgery , Dentin/surgery , Humans , Laser Therapy/instrumentation , Rats , Time Factors
2.
Opt Express ; 19(18): 17647-52, 2011 Aug 29.
Article in English | MEDLINE | ID: mdl-21935132

ABSTRACT

We demonstrate an all-fiber-integrated laser based on off-the-shelf components producing square-shaped, 1 ns-long pulses at 1.03 µm wavelength with 3.1 MHz repetition rate and 83 W of average power. The master-oscillator power-amplifier system is seeded by a fiber oscillator utilizing a nonlinear optical loop mirror and producing incompressible pulses. A simple technique is employed to demonstrate that the pulses indeed have a random chirp. We propose that the long pulse duration should result in more efficient material removal relative to picosecond pulses, while being short enough to minimize heat effects, relative to nanosecond pulses commonly used in micromachining. Micromachining of Ti surfaces using 0.1 ns, 1 ns and 100 ns pulses supports these expectations.

3.
Opt Express ; 19(11): 10986-96, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21643360

ABSTRACT

We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns.


Subject(s)
Optics and Photonics , Titanium/chemistry , Acoustics , Alloys , Biocompatible Materials , Cell Adhesion , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Equipment Design , Humans , Lasers , Materials Testing , Microscopy, Electron, Scanning/methods , Surface Properties , Ytterbium/chemistry
4.
Opt Lett ; 34(16): 2516-8, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19684834

ABSTRACT

Intensity noise of mode-locked fiber lasers is characterized systematically for all major mode-locking regimes over a wide range of parameters. We find that equally low-noise performance can be obtained in all regimes. Losses in the cavity influence noise strongly without a clear trace in the pulse characteristics. Given that high-energy fiber laser oscillators reported to date have utilized large output coupling ratios, they are likely to have had high noise. Instabilities that occur at high pulse energies are characterized. Noise level is virtually independent of pulse energy below a threshold for the onset of nonlinearly induced instabilities. Continuous-wave peak formation and multiple pulsing influence noise performance moderately. At high energies, a noise outburst is encountered, resulting in up to 2 orders of magnitude increase in noise. These results effectively constitute guidelines for minimization of the laser noise in mode-locked fiber lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...