Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 194(10): 690, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35984506

ABSTRACT

A hyphenated instrumental method high-performance liquid chromatography-inductively coupled plasma-optical emission spectrometry (HPLC-ICP-OES) was used for the separation and determination of Cr(III) and Cr(VI). After the chromatographic separation of chromium species by anion exchange column, their spectrophotometric detection was carried out by ICP-OES system. Important instrumental and chromatographic parameters were investigated via univariate optimization approach to obtain high signal to noise ratio and good resolution for chromium species. Under the optimum HPLC-ICP-OES conditions, limit of detection (LOD) values for Cr(III) and Cr(VI) were found to be 0.27 and 0.05 mg/kg, respectively. In addition, accuracy and applicability of developed method were checked by recovery experiments performed with the spiked soil, grass, and water samples. High percent recovery results (88-104%) were achieved by utilizing matrix matching calibration strategy for the selected samples. The results showed that this method was accurate and applicable to soil, grass, and water samples.


Subject(s)
Chromium , Environmental Monitoring , Chromatography, High Pressure Liquid/methods , Chromium/analysis , Soil , Spectrophotometry, Atomic/methods , Water/analysis
2.
Rapid Commun Mass Spectrom ; 36(12): e9282, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35229402

ABSTRACT

RATIONALE: A derivatization switchable solvent liquid-liquid microextraction quadruple isotope dilution gas chromatography mass spectrometry (D-SS-LLME-ID4 -GC/MS) method is presented for the determination of hydroxychloroquine sulfate in human biofluids. METHODS: While mixing type/period and concentration of NaOH were optimized via a univariate optimization approach, a multivariate optimization approach was used to determine optimum values for relatively more important parameters such as volumes of derivatization agent (acetic anhydride), NaOH and switchable solvent. RESULTS: Under the optimum experimental conditions, limit of detection and limit of quantification were calculated as 0.03 and 0.09 mg/kg (mass based), respectively. An isotopically labelled material (hydroxychloroquine methyl acetate-d3 ) was firstly synthesized to be used in ID4 experiments which give highly accurate and precise recovery results. After the application of D-SS-LLME-ID4 , superior percent recovery results were recorded as 99.9 ± 1.6-101.3 ± 1.2 for human serum, 99.9 ± 1.7-99.8 ± 1.8 for urine and 99.6 ± 1.5-101.0 ± 1.1 for saliva samples. CONCLUSIONS: The developed D-SS-LLME-ID4 -GC/MS method compensates the complicated matrix effects of human biofluids and provides highly accurate quantification of an analyte with precise results.


Subject(s)
Liquid Phase Microextraction , Acetates , Gas Chromatography-Mass Spectrometry/methods , Humans , Hydroxychloroquine , Isotopes , Limit of Detection , Liquid Phase Microextraction/methods , Sodium Hydroxide , Solvents/chemistry
3.
J Chromatogr A ; 1651: 462273, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34087718

ABSTRACT

This study presents an accurate and precise analytical strategy for the determination of chloroquine phosphate at trace levels in human body fluids (urine, serum, and saliva). Simultaneous derivatization-spraying based fine droplet formation-liquid phase microextraction (SD-SFDF-LPME) method was used to derivatize and preconcentrate the analyte prior to gas chromatography-mass spectrometry (GC-MS) measurements. Acetic anhydride was employed as derivatizing agent in this study. After optimizing the SD-SFDF-LPME method, the limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.16 and 0.53 mg/kg, respectively. Quadruple isotope dilution (ID4) was coupled to the SD-SFDF-LPME method in order to alleviate matrix effects and promote accuracy/precision of the method. Chloroquine acetamide-d3 was firstly synthesized in our research laboratory and used as the isotopic analogue of the analyte in the ID4 experiments. Superior percent recovery results (99.4% - 101.0%) with low standard deviation values were obtained for the spiked samples. This validated the developed SD-SFDF-LPME-ID4-GC-MS method as highly accurate and precise for the determination of chloroquine phosphate at trace levels. In addition, the isotopic analogue of the analyte was obtained via the acetamide derivative of the analyte, which is an alternative to obtain isotopic analogues of organic compounds that are not accessible or commercially available.


Subject(s)
Chloroquine/analogs & derivatives , Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Body Fluids/chemistry , Chloroquine/analysis , Chloroquine/blood , Chloroquine/isolation & purification , Chloroquine/urine , Humans , Isotopes , Limit of Detection , Saliva/chemistry
4.
J Sep Sci ; 44(16): 3031-3040, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34102001

ABSTRACT

A new and efficient reversed-phase high-performance liquid chromatography-inductively coupled plasma-optical emission spectrometry method was developed for the simultaneous separation and determination of SeO3 2- and seleno-dl-methionine in kefir grains. For the system, limits of detection and quantitation values for SeO3 2- and seleno-dl-methionine were calculated as 0.52/1.73 mg/kg (as Se) and 0.26/0.87 mg/kg (as Se), respectively. After performing the system analytical performance, recovery experiment was done for kefir grains and percent recovery results for SeO3 2- and seleno-dl-methionine were calculated as 98.4 ± 0.8% and 93.6 ± 1.0%, respectively. It followed by the feeding studies that the kefir grains were exposed to three different concentrations of SeO3 2- (20, 30, and 50 mg/kg) for approximately 4 days at room temperature to investigate the conversion/non-conversion of SeO3 2- to seleno-dl-methionine. Next, the fed grains were extracted with tetramethylammonium hydroxide pentahydrate solution (20%, w/w) and then sent to the developed system. There was no detectable seleno-dl-methionine found in fed kefir grains at different concentrations of SeO3 2- while inorganic or elemental selenium in the fed kefir grains was determined between 1579.5 - 3116.0 mg/kg (as Se). Selenium species in the kefir grains samples was found in the form of SeO3 2- proved by using an anion exchange column.


Subject(s)
Food Analysis/methods , Kefir/analysis , Selenious Acid/analysis , Selenomethionine/analysis , Antioxidants , Chemistry Techniques, Analytical , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Equipment Design , Limit of Detection , Selenium , Spectrophotometry/methods
5.
Anal Sci ; 37(10): 1433-1438, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-33867401

ABSTRACT

A novel extraction method named hydrogen fluoride assisted-glass surface etching based liquid phase microextraction (HF-GSE-LPME) was proposed to determine 4-n-nonylphenol at trace levels by gas chromatography-mass spectrometry (GC-MS). After the evaluation of system analytical performance for the HF-GSE-LPME-GC-MS system, limit of detection (LOD) and limit of quantification (LOQ) values were calculated as 7.1 and 23.8 ng/g, respectively. Enhancement in detection power of the method was determined to be 22 fold when LOD values of the GC-MS and HF-GSE-LPME-GC-MS systems were compared with each other. Applicability and accuracy of the established method were checked by performing spiking experiments. A matrix matching calibration strategy was applied to boost the accuracy of quantification in both matrices, and the percent recovery results obtained for bottled drinking water and dam lake water samples were in the range of 98 - 107 and 90 - 117%, respectively.

6.
J Mass Spectrom ; 55(10): e4622, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33210452

ABSTRACT

A novel, ecofriendly, and easy extraction and preconcentration method named as vortex-assisted spraying-based fine droplet formation liquid-phase microextraction was proposed for the determination of prochloraz at trace levels in orange juice samples by gas chromatography-mass spectrometry (GC-MS). In this novel system, extraction solvent is dispersed by the help of spraying apparatus instead of dispersive solvent. Various parameters of the method were carefully optimized to increase signal-to-noise ratio of the analyte. Under the optimum chromatographic and extraction conditions, limit of detection and limit of quantification were calculated as 3.2 and 10.8 µg/kg, respectively. Moreover, enhancement in quantification power for the GC-MS system was determined as 372 folds based on LOQ comparison. Relative recovery results for orange juice samples were found to be between 95.0-107.7% by utilizing matrix matching calibration. Furthermore, the developed method may be used to efficiently and simply extract other organic compounds for their determinations in several matrices.


Subject(s)
Citrus sinensis/chemistry , Fruit and Vegetable Juices/analysis , Gas Chromatography-Mass Spectrometry/methods , Imidazoles/analysis , Imidazoles/isolation & purification , Limit of Detection , Linear Models , Liquid Phase Microextraction , Pesticide Residues/analysis , Pesticide Residues/isolation & purification , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...