Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(5): e0285592, 2023.
Article in English | MEDLINE | ID: mdl-37163493

ABSTRACT

INTRODUCTION: Pressure-volume (PV) loops can be used to assess both load-dependent and load-independent measures of cardiac hemodynamics. However, analysis of PV loops during exercise is challenging as it requires invasive measures. Using a novel method, it has been shown that left ventricular (LV) PV loops at rest can be obtained non-invasively from cardiac magnetic resonance imaging (CMR) and brachial pressures. Therefore, the aim of this study was to assess if LV PV loops can be obtained non-invasively from CMR during exercise to assess cardiac hemodynamics. METHODS: Thirteen endurance trained (ET; median 48 years [IQR 34-60]) and ten age and sex matched sedentary controls (SC; 43 years [27-57]) were included. CMR images were acquired at rest and during moderate intensity supine exercise defined as 60% of expected maximal heart rate. Brachial pressures were obtained in conjunction with image acquisition. RESULTS: Contractility measured as maximal ventricular elastance (Emax) increased in both groups during exercise (ET: 1.0 mmHg/ml [0.9-1.1] to 1.1 mmHg/ml [0.9-1.2], p<0.01; SC: 1.1 mmHg/ml [0.9-1.2] to 1.2 mmHg/ml [1.0-1.3], p<0.01). Ventricular efficiency (VE) increased in ET from 70% [66-73] at rest to 78% [75-80] (p<0.01) during exercise and in SC from 68% [63-72] to 75% [73-78] (p<0.01). Arterial elastance (EA) decreased in both groups (ET: 0.8 mmHg/ml [0.7-0.9] to 0.7 mmHg/ml [0.7-0.9], p<0.05; SC: 1.0 mmHg/ml [0.9-1.2] to 0.9 mmHg/ml [0.8-1.0], p<0.05). Ventricular-arterial coupling (EA/Emax) also decreased in both groups (ET: 0.9 [0.8-1.0] to 0.7 [0.6-0.8], p<0.01; SC: 1.0 [0.9-1.1] to 0.7 [0.7-0.8], p<0.01). CONCLUSIONS: This study demonstrates for the first time that LV PV loops can be generated non-invasively during exercise using CMR. ET and SC increase ventricular efficiency and contractility and decrease afterload and ventricular-arterial coupling during moderate supine exercise. These results confirm known physiology. Therefore, this novel method is applicable to be used during exercise in different cardiac disease states, which has not been possible non-invasively before.


Subject(s)
Heart Ventricles , Hemodynamics , Humans , Feasibility Studies , Heart Ventricles/diagnostic imaging , Heart , Arteries/physiology , Ventricular Function, Left/physiology , Stroke Volume/physiology
2.
Sci Rep ; 12(1): 5611, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379859

ABSTRACT

Exercise cardiovascular magnetic resonance (CMR) can unmask cardiac pathology not evident at rest. Real-time CMR in free breathing can be used, but respiratory motion may compromise quantification of left ventricular (LV) function. We aimed to develop and validate a post-processing algorithm that semi-automatically sorts real-time CMR images according to breathing to facilitate quantification of LV function in free breathing exercise. A semi-automatic algorithm utilizing manifold learning (Laplacian Eigenmaps) was developed for respiratory sorting. Feasibility was tested in eight healthy volunteers and eight patients who underwent ECG-gated and real-time CMR at rest. Additionally, volunteers performed exercise CMR at 60% of maximum heart rate. The algorithm was validated for exercise by comparing LV mass during exercise to rest. Respiratory sorting to end expiration and end inspiration (processing time 20 to 40 min) succeeded in all research participants. Bias ± SD for LV mass was 0 ± 5 g when comparing real-time CMR at rest, and 0 ± 7 g when comparing real-time CMR during exercise to ECG-gated at rest. This study presents a semi-automatic algorithm to retrospectively perform respiratory sorting in free breathing real-time CMR. This can facilitate implementation of exercise CMR with non-ECG-gated free breathing real-time imaging, without any additional physiological input.


Subject(s)
Magnetic Resonance Imaging , Ventricular Function, Left , Exercise/physiology , Heart/physiology , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies , Ventricular Function, Left/physiology
3.
BMC Cardiovasc Disord ; 21(1): 519, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702172

ABSTRACT

BACKGROUND: Cardiac resynchronization therapy (CRT) restores ventricular synchrony and induces left ventricular (LV) reverse remodeling in patients with heart failure (HF) and dyssynchrony. However, 30% of treated patients are non-responders despite all efforts. Cardiac magnetic resonance imaging (CMR) can be used to quantify regional contributions to stroke volume (SV) as potential CRT predictors. The aim of this study was to determine if LV longitudinal (SVlong%), lateral (SVlat%), and septal (SVsept%) contributions to SV differ from healthy controls and investigate if these parameters can predict CRT response. METHODS: Sixty-five patients (19 women, 67 ± 9 years) with symptomatic HF (LVEF ≤ 35%) and broadened QRS (≥ 120 ms) underwent CMR. SVlong% was calculated as the volume encompassed by the atrioventricular plane displacement (AVPD) from end diastole (ED) to end systole (ES) divided by total SV. SVlat%, and SVsept% were calculated as the volume encompassed by radial contraction from ED to ES. Twenty age- and sex-matched healthy volunteers were used as controls. The regional measures were compared to outcome response defined as ≥ 15% decrease in echocardiographic LV end-systolic volume (LVESV) from pre- to 6-months post CRT (delta, Δ). RESULTS: AVPD and SVlong% were lower in patients compared to controls (8.3 ± 3.2 mm vs 15.3 ± 1.6 mm, P < 0.001; and 53 ± 18% vs 64 ± 8%, P < 0.01). SVsept% was lower (0 ± 15% vs 10 ± 4%, P < 0.01) with a higher SVlat% in the patient group (42 ± 16% vs 29 ± 7%, P < 0.01). There were no differences between responders and non-responders in neither SVlong% (P = 0.87), SVlat% (P = 0.09), nor SVsept% (P = 0.65). In patients with septal net motion towards the right ventricle (n = 28) ΔLVESV was - 18 ± 22% and with septal net motion towards the LV (n = 37) ΔLVESV was - 19 ± 23% (P = 0.96). CONCLUSIONS: Longitudinal function, expressed as AVPD and longitudinal contribution to SV, is decreased in patients with HF scheduled for CRT. A larger lateral contribution to SV compensates for the abnormal septal systolic net movement. However, LV reverse remodeling could not be predicted by these regional contributors to SV.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure/therapy , Heart/diagnostic imaging , Magnetic Resonance Imaging , Stroke Volume/physiology , Ventricular Function, Left/physiology , Aged , Case-Control Studies , Echocardiography , Female , Heart/physiology , Heart Failure/diagnostic imaging , Heart Failure/etiology , Heart Failure/physiopathology , Humans , Male , Middle Aged , Myocardial Ischemia/complications , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...