Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2796: 23-34, 2024.
Article in English | MEDLINE | ID: mdl-38856893

ABSTRACT

Solid-state NMR allows for the study of membrane proteins under physiological conditions. Here we describe a method for detection of bound ions in the selectivity filter of ion channels using solid-state NMR. This method employs standard 1H-detected solid-state NMR setup and experiment types, which is enabled by using 15N-labelled ammonium ions to mimic potassium ions.


Subject(s)
Ammonium Compounds , Ion Channels , Nitrogen Isotopes , Nitrogen Isotopes/analysis , Ammonium Compounds/chemistry , Ammonium Compounds/analysis , Ion Channels/metabolism , Ion Channels/chemistry , Ions/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Magnetic Resonance Spectroscopy/methods
2.
Sci Adv ; 9(29): eadh3858, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37467320

ABSTRACT

Rhomboid proteases hydrolyze substrate helices within the lipid bilayer to release soluble domains from the membrane. Here, we investigate the mechanism of activity regulation for this unique but wide-spread protein family. In the model rhomboid GlpG, a lateral gate formed by transmembrane helices TM2 and TM5 was previously proposed to allow access of the hydrophobic substrate to the shielded hydrophilic active site. In our study, we modified the gate region and either immobilized the gate by introducing a maleimide-maleimide (M2M) crosslink or weakened the TM2/TM5 interaction network through mutations. We used solid-state nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and molecular docking to investigate the resulting effects on structure and dynamics on the atomic level. We find that variants with increased dynamics at TM5 also exhibit enhanced activity, whereas introduction of a crosslink close to the active site strongly reduces activity. Our study therefore establishes a strong link between the opening dynamics of the lateral gate in rhomboid proteases and their enzymatic activity.


Subject(s)
Escherichia coli Proteins , Peptide Hydrolases , Peptide Hydrolases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Molecular Docking Simulation , Membrane Proteins/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , DNA-Binding Proteins/metabolism
3.
J Am Chem Soc ; 144(9): 4147-4157, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35200002

ABSTRACT

The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium-selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channels.


Subject(s)
Ammonium Compounds , Potassium Channels , Ammonium Compounds/metabolism , Bacterial Proteins/chemistry , Ions/metabolism , Molecular Dynamics Simulation , Potassium/metabolism , Potassium Channels/chemistry , Protein Conformation , Water/metabolism
4.
Front Physiol ; 12: 792958, 2021.
Article in English | MEDLINE | ID: mdl-34950061

ABSTRACT

Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.

5.
Chem Sci ; 12(38): 12754-12762, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703562

ABSTRACT

Intramembrane proteolysis plays a fundamental role in many biological and pathological processes. Intramembrane proteases thus represent promising pharmacological targets, but few selective inhibitors have been identified. This is in contrast to their soluble counterparts, which are inhibited by many common drugs, and is in part explained by the inherent difficulty to characterize the binding of drug-like molecules to membrane proteins at atomic resolution. Here, we investigated the binding of two different inhibitors to the bacterial rhomboid protease GlpG, an intramembrane protease characterized by a Ser-His catalytic dyad, using solid-state NMR spectroscopy. H/D exchange of deuterated GlpG can reveal the binding position while chemical shift perturbations additionally indicate the allosteric effects of ligand binding. Finally, we determined the exact binding mode of a rhomboid protease-inhibitor using a combination of solid-state NMR and molecular dynamics simulations. We believe this approach can be widely adopted to study the structure and binding of other poorly characterized membrane protein-ligand complexes in a native-like environment and under physiological conditions.

6.
J Mol Biol ; 433(15): 167091, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34090923

ABSTRACT

Ion conduction is an essential function for electrical activity in all organisms. The non-selective ion channel NaK was previously shown to adopt two stable conformations of the selectivity filter. Here, we present solid-state NMR measurements of NaK demonstrating a population shift between these conformations induced by changing the ions in the sample while the overall structure of NaK is not affected. We show that two K+-selective mutants (NaK2K and NaK2K-Y66F) suffer a complete loss of selectivity filter stability under Na+ conditions, but do not collapse into a defined structure. Widespread chemical shift perturbations are seen between the Na+ and K+ states of the K+-selective mutants in the region of the pore helix indicating structural changes. We conclude that the stronger link between the selectivity filter and the pore helix in the K+-selective mutants, compared to the non-selective wild-type NaK channel, reduces the ion-dependent conformational flexibility of the selectivity filter.


Subject(s)
Mutation , Potassium Channels, Sodium-Activated/chemistry , Potassium Channels, Sodium-Activated/metabolism , Sodium/metabolism , Hydrogen Bonding , Magnetic Resonance Imaging , Models, Molecular , Potassium Channels, Sodium-Activated/genetics , Protein Conformation , Protein Stability
7.
Nat Commun ; 11(1): 5759, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188213

ABSTRACT

Bacteriophage SPP1 is a double-stranded DNA virus of the Siphoviridae family that infects the bacterium Bacillus subtilis. This family of phages features a long, flexible, non-contractile tail that has been difficult to characterize structurally. Here, we present the atomic structure of the tail tube of phage SPP1. Our hybrid structure is based on the integration of structural restraints from solid-state nuclear magnetic resonance (NMR) and a density map from cryo-EM. We show that the tail tube protein gp17.1 organizes into hexameric rings that are stacked by flexible linker domains and, thus, form a hollow flexible tube with a negatively charged lumen suitable for the transport of DNA. Additionally, we assess the dynamics of the system by combining relaxation measurements with variances in density maps.


Subject(s)
Siphoviridae/chemistry , Amino Acid Sequence , Cryoelectron Microscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Structure, Secondary , Siphoviridae/ultrastructure , Thermodynamics , Viral Proteins/chemistry , Viral Proteins/ultrastructure
8.
J Am Chem Soc ; 141(43): 17314-17321, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31603315

ABSTRACT

Rhomboid proteases are intramembrane proteases that hydrolyze substrate peptide bonds within the lipid bilayer and are important for a wide range of biological processes. The bacterial intramembrane protease GlpG is one of the model systems for structural investigations of the rhomboid family. Two different models of substrate gating have been proposed, based on crystal structures of GlpG in detergent micelles. Here, we present a detailed investigation of enzymatically active GlpG in a native-like lipid environment using solid-state NMR spectroscopy. Proton-detected experiments confirm the presence of water molecules in the catalytic cavity. A secondary chemical shift analysis indicates a previously unobserved kink in the central part of the gating helix TM5. Dynamics measurements revealed a dynamic hotspot of GlpG at the N-terminal part of TM5 and the adjacent loop L4, indicating that this region is important for gating. In addition, relaxation dispersion experiments suggest that TM5 is in conformational exchange between an open and a closed conformation.


Subject(s)
DNA-Binding Proteins/chemistry , Endopeptidases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Liposomes/chemistry , Membrane Proteins/chemistry , DNA-Binding Proteins/metabolism , Endopeptidases/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Magnetic Resonance Spectroscopy , Membrane Proteins/metabolism , Models, Molecular , Protein Conformation , Water/chemistry
9.
Sci Rep ; 9(1): 11082, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366983

ABSTRACT

Solid state NMR is a powerful method to obtain information on the structure and dynamics of protein complexes that, due to solubility and size limitations, cannot be achieved by other methods. Here, we present an approach that allows the quantification of microsecond conformational exchange in large protein complexes by using a paramagnetic agent to accelerate 15N R1ρ relaxation dispersion measurements and overcome sensitivity limitations. The method is validated on crystalline GB1 and then applied to a >300 kDa precipitated complex of GB1 with full length human immunoglobulin G (IgG). The addition of a paramagnetic agent increased the signal to noise ratio per time unit by a factor of 5, which allowed full relaxation dispersion curves to be recorded on a sample containing less than 50 µg of labelled material in 5 and 10 days on 850 and 700 MHz spectrometers, respectively. We discover a similar exchange process across the ß-sheet in GB1 in crystals and in complex with IgG. However, the slow motion observed for a number of residues in the α-helix of crystalline GB1 is not detected in the complex.


Subject(s)
Proteins/chemistry , Humans , Immunoglobulin G/chemistry , Motion , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand
10.
Sci Adv ; 5(7): eaaw6756, 2019 07.
Article in English | MEDLINE | ID: mdl-31392272

ABSTRACT

Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism.


Subject(s)
Ion Channel Gating , Potassium Channels/metabolism , Water/metabolism , Amino Acid Sequence , Cell Membrane Permeability , Diffusion , Potassium Channels/chemistry
11.
J Biomol NMR ; 73(6-7): 281-291, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31028572

ABSTRACT

Uropathogenic Escherichia coli invades and colonizes hosts by attaching to cells using adhesive pili on the bacterial surface. Although many biophysical techniques have been used to study the structure and mechanical properties of pili, many important details are still unknown. Here we use proton-detected solid-state NMR experiments to investigate solvent accessibility and structural dynamics. Deuterium back-exchange at labile sites of the perdeuterated, fully proton back-exchanged pili was conducted to investigate hydrogen/deuterium (H/D) exchange patterns of backbone amide protons in pre-assembled pili. We found distinct H/D exchange patterns in lateral and axial intermolecular interfaces in pili. Amide protons protected from H/D exchange in pili are mainly located in the core region of the monomeric subunit and in the lateral intermolecular interface, whereas the axial intermolecular interface and the exterior region of pili are highly exposed to H/D exchange. Additionally, we performed molecular dynamics simulations of the type 1 pilus rod and estimated the probability of H/D exchange based on hydrogen bond dynamics. The comparison of the experimental observables and simulation data provides insights into stability and mechanical properties of pili.


Subject(s)
Deuterium/chemistry , Fimbriae Proteins/chemistry , Hydrogen/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protons , Algorithms , Protein Conformation
12.
Chem Sci ; 9(47): 8850-8859, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30627403

ABSTRACT

Teixobactin is a new promising antibiotic that targets cell wall biosynthesis by binding to lipid II and has no detectable resistance thanks to its unique but yet not fully understood mechanism of operation. To aid in the structure-based design of teixobactin analogues with improved pharmacological properties, we present a 3D structure of native teixobactin in membrane mimetics and characterise its binding to lipid II through a combination of solution NMR and fast (90 kHz) magic angle spinning solid state NMR. In NMR titrations, we observe a pattern strongly suggesting interactions between the backbone of the C-terminal "cage" and the pyrophosphate moiety in lipid II. We find that the N-terminal part of teixobactin does not only act as a membrane anchor, as previously thought, but is actively involved in binding. Moreover, teixobactin forms a well-structured and specific complex with lipid II, where the N-terminal part of teixobactin assumes a ß conformation that is highly prone to aggregation, which likely contributes to the antibiotic's high bactericidal efficiency. Overall, our study provides several new clues to teixobactin's modes of action.

13.
J Am Chem Soc ; 139(35): 12165-12174, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28780861

ABSTRACT

Solid-state NMR is becoming a viable alternative for obtaining information about structures and dynamics of large biomolecular complexes, including ones that are not accessible to other high-resolution biophysical techniques. In this context, methods for probing protein-protein interfaces at atomic resolution are highly desirable. Solvent paramagnetic relaxation enhancements (sPREs) proved to be a powerful method for probing protein-protein interfaces in large complexes in solution but have not been employed toward this goal in the solid state. We demonstrate that 1H and 15N relaxation-based sPREs provide a powerful tool for characterizing intermolecular interactions in large assemblies in the solid state. We present approaches for measuring sPREs in practically the entire range of magic angle spinning frequencies used for biomolecular studies and discuss their benefits and limitations. We validate the approach on crystalline GB1, with our experimental results in good agreement with theoretical predictions. Finally, we use sPREs to characterize protein-protein interfaces in the GB1 complex with immunoglobulin G (IgG). Our results suggest the potential existence of an additional binding site and provide new insights into GB1:IgG complex structure that amend and revise the current model available from studies with IgG fragments. We demonstrate sPREs as a practical, widely applicable, robust, and very sensitive technique for determining intermolecular interaction interfaces in large biomolecular complexes in the solid state.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Solvents/chemistry , Crystallization , Models, Molecular , Protein Binding
14.
Angew Chem Int Ed Engl ; 54(51): 15374-8, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26537742

ABSTRACT

Understanding the dynamics of interacting proteins is a crucial step toward describing many biophysical processes. Here we investigate the backbone dynamics for protein GB1 in two different assemblies: crystalline GB1 and the precipitated GB1-antibody complex with a molecular weight of more than 300 kDa. We perform these measurements on samples containing as little as eight nanomoles of GB1. From measurements of site-specific (15) N relaxation rates including relaxation dispersion we obtain snapshots of dynamics spanning nine orders of magnitude in terms of the time scale. A comparison of measurements for GB1 in either environment reveals that while many of the dynamic features of the protein are conserved between them (in particular for the fast picosecond-nanosecond motions), much greater differences occur for slow motions with motions in the >500 ns range being more prevalent in the complex. The data suggest that GB1 can potentially undergo a small-amplitude overall anisotropic motion sampling the interaction interface in the complex.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Protein Binding
15.
J Biomol NMR ; 62(3): 253-61, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26078089

ABSTRACT

Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Protons
16.
Angew Chem Weinheim Bergstr Ger ; 127(51): 15594-15598, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-27478273

ABSTRACT

Understanding the dynamics of interacting proteins is a crucial step toward describing many biophysical processes. Here we investigate the backbone dynamics for protein GB1 in two different assemblies: crystalline GB1 and the precipitated GB1-antibody complex with a molecular weight of more than 300 kDa. We perform these measurements on samples containing as little as eight nanomoles of GB1. From measurements of site-specific 15N relaxation rates including relaxation dispersion we obtain snapshots of dynamics spanning nine orders of magnitude in terms of the time scale. A comparison of measurements for GB1 in either environment reveals that while many of the dynamic features of the protein are conserved between them (in particular for the fast picosecond-nanosecond motions), much greater differences occur for slow motions with motions in the >500 ns range being more prevalent in the complex. The data suggest that GB1 can potentially undergo a small-amplitude overall anisotropic motion sampling the interaction interface in the complex.

17.
J Am Chem Soc ; 136(48): 16800-6, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25381931

ABSTRACT

NMR spectroscopy is a prime technique for characterizing atomic-resolution structures and dynamics of biomolecular complexes but for such systems faces challenges of sensitivity and spectral resolution. We demonstrate that the application of (1)H-detected experiments at magic-angle spinning frequencies of >50 kHz enables the recording, in a matter of minutes to hours, of solid-state NMR spectra suitable for quantitative analysis of protein complexes present in quantities as small as a few nanomoles (tens of micrograms for the observed component). This approach enables direct structure determination and quantitative dynamics measurements in domains of protein complexes with masses of hundreds of kilodaltons. Protein-protein interaction interfaces can be mapped out by comparison of the chemical shifts of proteins within solid-state complexes with those of the same constituent proteins free in solution. We employed this methodology to characterize a >300 kDa complex of GB1 with full-length human immunoglobulin, where we found that sample preparation by simple precipitation yields spectra of exceptional quality, a feature that is likely to be shared with some other precipitating complexes. Finally, we investigated extensions of our methodology to spinning frequencies of up to 100 kHz.


Subject(s)
Antigen-Antibody Complex/chemistry , Chemical Precipitation , Immunoglobulins/chemistry , Immunoglobulins/immunology , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Proteins/immunology , Antigen-Antibody Complex/immunology , Humans , Models, Molecular
18.
Biopolymers ; 101(4): 378-90, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23955662

ABSTRACT

Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-silk fusion protein is predominantly α-helical, and that pH can trigger a α- to ß-transition resulting in aggregation. Structural analysis by small angle X-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution.


Subject(s)
Green Fluorescent Proteins/metabolism , Protein Multimerization , Silk/chemistry , Animals , Circular Dichroism , Dynamic Light Scattering , Electrophoresis, Polyacrylamide Gel , Fluorescence , Hydrogen-Ion Concentration , Models, Molecular , Protein Refolding , Protein Structure, Secondary , Recombinant Fusion Proteins/isolation & purification , Scattering, Small Angle , Solubility , Spectroscopy, Fourier Transform Infrared , Spiders , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...