Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2764: 265-278, 2024.
Article in English | MEDLINE | ID: mdl-38393600

ABSTRACT

Microphysiological systems involving microfluidic 3D culture of cancer cells have emerged as a versatile toolkit to study tumor biological problems and evaluate potential treatment strategies. Incorporation of microfluidic technologies in 3D tissue culture offers opportunities for realistic simulation of tumor microenvironment in vitro by facilitating a dynamic culture environment mimicking features of human physiology such as reconstituted ECM, interstitial flow, and gradients of drugs and biomacromolecules. This protocol describes development of 3D microfluidic cell culture based on Tumor-Microenvironment-on-Chip (T-MOC) platform modeling tumor blood and lymphatic capillary vessels and the interstitial space in between. Based on earlier applications of T-MOC for transport characteristics, drug response, and tumor-stroma interactions in mammary carcinoma and pancreatic adenocarcinoma, this protocol provides detailed description of device fabrication, on-chip 3D culture, and drug treatment assays. This protocol can easily be adapted for applications involving other cancer types.


Subject(s)
Adenocarcinoma , Breast Neoplasms , Pancreatic Neoplasms , Humans , Female , Tumor Microenvironment , Microfluidics/methods , Lab-On-A-Chip Devices
2.
Pharm Res ; 40(2): 501-523, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35650448

ABSTRACT

Computational modeling of drug delivery is becoming an indispensable tool for advancing drug development pipeline, particularly in nanomedicine where a rational design strategy is ultimately sought. While numerous in silico models have been developed that can accurately describe nanoparticle interactions with the bioenvironment within prescribed length and time scales, predictive design of these drug carriers, dosages and treatment schemes will require advanced models that can simulate transport processes across multiple length and time scales from genomic to population levels. In order to address this problem, multiscale modeling efforts that integrate existing discrete and continuum modeling strategies have recently emerged. These multiscale approaches provide a promising direction for bottom-up in silico pipelines of drug design for delivery. However, there are remaining challenges in terms of model parametrization and validation in the presence of variability, introduced by multiple levels of heterogeneities in disease state. Parametrization based on physiologically relevant in vitro data from microphysiological systems as well as widespread adoption of uncertainty quantification and sensitivity analysis will help address these challenges.


Subject(s)
Drug Delivery Systems , Nanoparticles , Uncertainty , Computer Simulation , Drug Carriers
3.
Nano Lett ; 22(18): 7318-7327, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36112517

ABSTRACT

Cells migrate in vivo through channel-like tracks. While polydimethylsiloxane devices emulate such tracks in vitro, their channel walls are impermeable and have supraphysiological stiffness. Existing hydrogel-based platforms address these issues but cannot provide high-throughput analysis of cell motility in independently controllable stiffness and confinement. We herein develop polyacrylamide (PA)-based microchannels of physiological stiffness and prescribed dimensions for high-throughput analysis of cell migration and identify a biphasic dependence of speed upon confinement and stiffness. By utilizing novel four-walled microchannels with heterogeneous stiffness, we reveal the distinct contributions of apicolateral versus basal microchannel wall stiffness to confined versus unconfined migration. While the basal wall stiffness dictates unconfined migration, apicolateral stiffness controls confined migration. By tracking nanobeads embedded within channel walls, we innovate three-dimensional traction force measurements around spatially confining cells at subcellular resolution. Our unique and highly customizable device fabrication strategy provides a physiologically relevant in vitro platform to study confined cells.


Subject(s)
Mechanical Phenomena , Traction , Cell Movement , Dimethylpolysiloxanes , Hydrogels
4.
Front Immunol ; 13: 779888, 2022.
Article in English | MEDLINE | ID: mdl-35371019

ABSTRACT

Cytotoxic T lymphocytes (CTLs) play an integral role in the adaptive immune response by killing infected cells. Antigen presenting cells (APCs), such as dendritic cells, present pathogenic peptides to the T cell receptor on the CTL surface and co-stimulatory signals required for complete activation. Activated CTLs secrete lytic granules containing enzymes that trigger target cell death at the CTL-target contact, also known as the immune synapse (IS). The actin and microtubule cytoskeletons are instrumental in the killing of CTL targets. Lytic granules are transported along microtubules to the IS, where granule secretion is facilitated by actin depletion and recovery. Furthermore, actomyosin contractility promotes target cell death by mediating mechanical force exertion at the IS. Recent studies have shown that inflammatory cytokines produced by APCs, such as interleukin-12 (IL-12), act as a third signal for CTL activation and enhance CTL proliferation and effector function. However, the biophysical mechanisms mediating such enhanced effector function remain unclear. We hypothesized that the third signal for CTL activation, IL-12, modulates cytoskeletal dynamics and force exertion at the IS, thus potentiating CTL effector function. Here, we used live cell total internal reflection fluorescence (TIRF) microscopy to study actomyosin and microtubule dynamics at the IS of murine primary CTLs activated in the presence of peptide-MHC and co-stimulation alone (two signals), or additionally with IL-12 (three signals). We found that three signal-activated CTLs have altered actin flows, myosin dynamics and microtubule growth rates as compared to two signal-activated CTLs. We further showed that lytic granules in three-signal activated CTLs are less clustered and have lower velocities than in two-signal activated CTLs. Finally, we used traction force microscopy to show that three signal-activated CTLs exert greater traction forces than two signal-activated CTLs. Our results demonstrate that activation of CTLs in the presence of IL-12 leads to differential modulation of the cytoskeleton, thereby augmenting the mechanical response of CTLs to their targets. This indicates a potential physical mechanism via which the third signal can enhance the CTL response.


Subject(s)
Antineoplastic Agents , T-Lymphocytes, Cytotoxic , Actin Cytoskeleton , Actins/metabolism , Actomyosin/metabolism , Animals , Interleukin-12/metabolism , Mice
5.
Lab Chip ; 20(20): 3720-3732, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32909573

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a complex disease with significant intra-tumoral heterogeneity (ITH). Currently, no reliable PDAC tumor model is available that can present ITH profiles in a controlled manner. We develop an in vitro microfluidic tumor model mimicking the heterogeneous accumulation of key driver mutations of human PDAC using cancer cells derived from genetically engineered mouse models. These murine pancreatic cancer cell lines have KPC (Kras and Trp53 mutations) and KIC genotypes (Kras mutation and Cdkn2a deletion). Also, the KIC genotypes have two distinct phenotypes - mesenchymal or epithelial. The tumor model mimics the ITH of human PDAC to study the effects of ITH on the gemcitabine response. The results show gemcitabine resistance induced by ITH. Remarkably, it shows that cancer cell-cell interactions induce the gemcitabine resistance potentially through epithelial-mesenchymal-transition. The tumor model can provide a useful testbed to study interaction mechanisms between heterogeneous cancer cell subpopulations.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Mice , Mutation , Pancreas , Pancreatic Neoplasms/genetics
6.
J R Soc Interface ; 14(135)2017 10.
Article in English | MEDLINE | ID: mdl-28978745

ABSTRACT

Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called 'en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied.


Subject(s)
Cell Movement , Cellular Microenvironment , Collagen/chemistry , Extracellular Matrix/chemistry , Fibroblasts/metabolism , Hydrogels/chemistry , Cells, Cultured , Fibroblasts/cytology , Humans , Male
7.
J Control Release ; 266: 129-139, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-28939108

ABSTRACT

Successful drug delivery and overcoming drug resistance are the primary clinical challenges for management and treatment of cancer. The ability to rapidly screen drugs and delivery systems within physiologically relevant environments is critically important; yet is currently limited due to lack of appropriate tumor models. To address this problem, we developed the Tumor-microenvironment-on-chip (T-MOC), a new microfluidic tumor model simulating the interstitial flow, plasma clearance, and transport of the drug within the tumor. We demonstrated T-MOC's capabilities by assessing the delivery and efficacy of doxorubicin in small molecular form versus hyaluronic acid nanoparticle (NP) formulation in MCF-7 and MDA-MB-231, two cell lines representative of different molecular subtypes of breast cancer. Doxorubicin accumulated and penetrated similarly in both cell lines while the NP accumulated more in MDA-MB-231 than MCF-7 potentially due to binding of hyaluronic acid to CD44 expressed by MDA-MB-231. However, the penetration of the NP was less than the molecular drug due to its larger size. In addition, both cell lines cultured on the T-MOC showed increased resistance to the drug compared to 2D culture where MDA-MB-231 attained a drug-resistant tumor-initiating phenotype indicated by increased CD44 expression. When grown in immunocompromised mice, both cell lines exhibited cell-type-dependent resistance and phenotypic changes similar to T-MOC, confirming its predictive ability for in vivo drug response. This initial characterization of T-MOC indicates its transformative potential for in vitro testing of drug efficacy towards prediction of in vivo outcomes and investigation of drug resistance mechanisms for advancement of personalized medicine.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/drug therapy , Doxorubicin/administration & dosage , Hyaluronic Acid/administration & dosage , Nanoparticles/administration & dosage , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Hyaluronan Receptors/metabolism , Mice , Microfluidics/methods , Tumor Microenvironment/drug effects
8.
Sci Rep ; 7(1): 9033, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831165

ABSTRACT

Focal adhesion kinase (FAK) and Src family kinases (SFK) are known to play critical roles in mechanotransduction and other crucial cell functions. Recent reports indicate that they reside in different microdomains of the plasma membrane. However, little is known about their subcellular domain-dependent roles and responses to extracellular stimuli. Here, we employed fluorescence resonance energy transfer (FRET)-based biosensors in conjunction with collagen-coupled agarose gels to detect subcellular activities of SFK and FAK in three-dimensional (3D) settings. We observed that SFK and FAK in the lipid rafts and nonrafts are differently regulated by fluid flow and pro-inflammatory cytokines. Inhibition of FAK in the lipid rafts blocked SFK response to fluid flow, while inhibition of SFK in the non-rafts blocked FAK activation by the cytokines. Ex-vivo FRET imaging of mouse cartilage explants showed that intermediate level of interstitial fluid flow selectively decreased cytokine-induced SFK/FAK activation. These findings suggest that SFK and FAK exert distinctive molecular hierarchy depending on their subcellular location and extracellular stimuli.


Subject(s)
Cartilage/metabolism , Collagen/chemistry , Cytokines/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , src-Family Kinases/metabolism , Animals , Biosensing Techniques , Cell Line , Fluorescence Resonance Energy Transfer , Humans , Imaging, Three-Dimensional , Mechanotransduction, Cellular , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Mice , Signal Transduction
9.
Macromol Biosci ; 17(9)2017 09.
Article in English | MEDLINE | ID: mdl-28683186

ABSTRACT

The progression of cancer is often accompanied by changes in the mechanical properties of an extracellular matrix. However, limited efforts have been made to reproduce these biological events in vitro. To this end, this study demonstrates that matrix remodeling caused by matrix metalloproteinase (MMP)-1 regulates phenotypic activities and modulates radiosensitivity of cancer cells exclusively in a 3D matrix. In this study, hepatocarcinoma cells are cultured in a collagen-based gel tailored to present an elastic modulus of ≈4.0 kPa. The subsequent exposure of the gel to MMP-1 decreases the elastic modulus from 4.0 to 0.5 kPa. In response to MMP-1, liver cancer cells undergo active proliferation, downregulation of E-cadherin, and the loss of detoxification capacity. The resulting spheroids are more sensitive to radiation than the spheroids cultured in the stiffer gel not exposed to MMP-1. Overall, this study serves to better understand and control the effects of MMP-induced matrix remodeling.


Subject(s)
Carcinoma, Hepatocellular/radiotherapy , Extracellular Matrix/metabolism , Liver Neoplasms/radiotherapy , Matrix Metalloproteinase 1/metabolism , Radiation Tolerance , Antigens, CD , Cadherins/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/physiopathology , Cell Proliferation , Elastic Modulus , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/physiopathology
10.
Article in English | MEDLINE | ID: mdl-28198106

ABSTRACT

Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website.


Subject(s)
Drug Delivery Systems , Microfluidics , Nanoparticles , Tumor Microenvironment , Humans , Nanomedicine
11.
J R Soc Interface ; 13(123)2016 10.
Article in English | MEDLINE | ID: mdl-27707905

ABSTRACT

Freezing of biomaterials is important in a wide variety of biomedical applications, including cryopreservation and cryosurgeries. For the success of these applications to various biomaterials, biophysical mechanisms, which determine freezing-induced changes in cells and tissues, need to be well understood. Specifically, the significance of the intracellular mechanics during freezing is not well understood. Thus, we hypothesize that cells interact during freezing with the surroundings such as suspension media and the extracellular matrix (ECM) via two distinct but related mechanisms-water transport and cytoskeletal mechanics. The underlying rationale is that the cytoplasm of the cells has poroelastic nature, which can regulate both cellular water transport and cytoskeletal mechanics. A poroelasticity-based cell dehydration model is developed and confirmed to provide insight into the effects of the hydraulic conductivity and stiffness of the cytoplasm on the dehydration of cells in suspension during freezing. We further investigated the effect of the cytoskeletal structures on the cryoresponse of cells embedded in the ECM by measuring the spatio-temporal intracellular deformation with dermal equivalent as a model tissue. The freezing-induced change in cell, nucleus and cytoplasm volume was quantified, and the possible mechanism of the volumetric change was proposed. The results are discussed considering the hierarchical poroelasticity of biological tissues.


Subject(s)
Cryopreservation , Cytoskeleton , Dermis , Elasticity , Fibroblasts , Tissue Engineering , Cytoskeleton/metabolism , Cytoskeleton/pathology , Dermis/metabolism , Dermis/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Freezing , Humans
12.
Chembiochem ; 17(12): 1138-41, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27059426

ABSTRACT

We demonstrate a DNAzyme-based walker system as a controlled oligonucleotide drug AS1411 release platform for breast cancer treatment. In this system, AS1411 strands are released from fuel strands as a walker moves along its carbon nanotube track. The release rate and amount of anticancer oligonucleotides are controlled by the walker operation. With a walker system embedded within the collagen extracellular matrix, we show that this drug release system can be used for in situ cancer cell growth inhibition.


Subject(s)
DNA, Catalytic/chemistry , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aptamers, Nucleotide , Cell Line, Tumor , Cell Survival/drug effects , Collagen/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , MCF-7 Cells , Quantum Dots/chemistry
13.
PLoS One ; 11(1): e0146660, 2016.
Article in English | MEDLINE | ID: mdl-26765741

ABSTRACT

This study aims to characterize and understand the effects of freezing on collagen structures and functionality. Specifically, thermodynamic destabilization of collagen at molecular- and fibril-levels by combination of low temperatures and freezing were experimentally characterized using modulated differential scanning calorimetry. In order to delineate the effects of sub-zero temperature and water-ice phase change, we hypothesized that the extent of destabilization can be determined based on post-thaw heat induced thermal denaturation of collagen. It is found that thermal denaturation temperature of collagen in hydrogel decreases by 1.4-1.6°C after freeze/thaw while no such decrease is observed in the case of molecular solution. The destabilization is predominantly due to ice formation. Exposure to low temperatures in the absence of ice has only minimal effect. Calorimetry measurements combined with morphological examination of collagen matrices by scanning electron microscopy suggest that freezing results in destabilization of collagen fibrils due to expansion of intrafibrillar space by ice formation. This fibril-level damage can be alleviated by use of cryoprotectant DMSO at concentrations as low as 0.5 M. A theoretical model explaining the change in collagen post-thaw thermal stability by freezing-induced fibril expansion is also proposed.


Subject(s)
Collagen Type I/chemistry , Freezing , Animals , Hydrogels/chemistry , Protein Stability , Rats
14.
ACS Biomater Sci Eng ; 2(11): 1968-1975, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-33440532

ABSTRACT

In the past several decades, significant efforts have been devoted to recapitulating the in vivo tissue microenvironment within an in vitro platform. However, it is still challenging to recreate de novo tissue with physiologically relevant matrix properties and fluid flow. To this end, this study demonstrates a method to independently tailor matrix stiffness and interstitial fluid flow using a cell-microenvironment-on-a-chip (C-MOC) platform. Collagen-polyethylene glycol gels tailored to present controlled stiffness and hydraulic conductivity were fabricated in a microfluidic chip. The chip was assembled to continuously create a steady flow of media through the gel. In the C-MOC platform, interstitial flow mitigated the effects of matrix softness on breast cancer cell behavior, according to an immunostaining-based analysis of estrogen receptor-α (ER-α), integrin ß1, and E-cadherin. This advanced cell culture platform serves to engineer tissue similar to in vitro tissue and contribute to better understanding and regulating of the biological roles of extracellular microenvironments.

15.
J Control Release ; 194: 157-67, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25194778

ABSTRACT

Delivery of therapeutic agents selectively to tumor tissue, which is referred as "targeted delivery," is one of the most ardently pursued goals of cancer therapy. Recent advances in nanotechnology enable numerous types of nanoparticles (NPs) whose properties can be designed for targeted delivery to tumors. In spite of promising early results, the delivery and therapeutic efficacy of the majority of NPs are still quite limited. This is mainly attributed to the limitation of currently available tumor models to test these NPs and systematically study the effects of complex transport and pathophysiological barriers around the tumors. In this study, thus, we developed a new in vitro tumor model to recapitulate the tumor microenvironment determining the transport around tumors. This model, named tumor-microenvironment-on-chip (T-MOC), consists of 3-dimensional microfluidic channels where tumor cells and endothelial cells are cultured within extracellular matrix under perfusion of interstitial fluid. Using this T-MOC platform, the transport of NPs and its variation due to tumor microenvironmental parameters have been studied including cut-off pore size, interstitial fluid pressure, and tumor tissue microstructure. The results suggest that T-MOC is capable of simulating the complex transport around the tumor, and providing detailed information about NP transport behavior. This finding confirms that NPs should be designed considering their dynamic interactions with tumor microenvironment.


Subject(s)
Nanoparticles/metabolism , Neoplasms/metabolism , Tumor Microenvironment , Capillaries/metabolism , Cell Line, Tumor , Cells, Cultured , Computer Simulation , Drug Delivery Systems , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Extracellular Fluid/metabolism , Extracellular Matrix/metabolism , Female , Humans , MCF-7 Cells , Microfluidics , Particle Size
16.
J Nanotechnol Eng Med ; 4(1): 110051-110059, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23908694

ABSTRACT

Quality and functionality of engineered tissues are closely related to the microstructures and integrity of their extracellular matrix (ECM). However, currently available methods for characterizing ECM structures are often labor-intensive, destructive, and limited to a small fraction of the total area. These methods are also inappropriate for assessing temporal variations in ECM structures. In this study, to overcome these limitations and challenges, we propose an elastic light scattering approach to spatiotemporally assess ECM microstructures in a relatively large area in a nondestructive manner. To demonstrate its feasibility, we analyze spectroscopic imaging data obtained from acellular collagen scaffolds and dermal equivalents as model ECM structures. For spatial characterization, acellular scaffolds are examined after a freeze/thaw process mimicking a cryopreservation procedure to quantify freezing-induced structural changes in the collagen matrix. We further analyze spatial and temporal changes in ECM structures during cell-driven compaction in dermal equivalents. The results show that spectral dependence of light elastically backscattered from engineered tissue is sensitively associated with alterations in ECM microstructures. In particular, a spectral decay rate over the wavelength can serve as an indicator for the pore size changes in ECM structures, which are at nanometer scale. A decrease in the spectral decay rate suggests enlarged pore sizes of ECM structures. The combination of this approach with a whole-field imaging platform further allows visualization of spatial heterogeneity of EMC microstructures in engineered tissues. This demonstrates the feasibility of the proposed method that nano- and micrometer scale alteration of the ECM structure can be detected and visualized at a whole-field level. Thus, we envision that this spectroscopic imaging approach could potentially serve as an effective characterization tool to nondestructively, accurately, and rapidly quantify ECM microstructures in engineered tissue in a large area.

17.
J Biomech Eng ; 135(9): 91001, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23719856

ABSTRACT

During cryopreservation, ice forms in the extracellular space resulting in freezing-induced deformation of the tissue, which can be detrimental to the extracellular matrix (ECM) microstructure. Meanwhile, cells dehydrate through an osmotically driven process as the intracellular water is transported to the extracellular space, increasing the volume of fluid for freezing. Therefore, this study examines the effects of cellular presence on tissue deformation and investigates the significance of intracellular water transport and cell-ECM interactions in freezing-induced cell-fluid-matrix interactions. Freezing-induced deformation characteristics were examined through cell image deformetry (CID) measurements of collagenous engineered tissues embedded with different concentrations of MCF7 breast cancer cells versus microspheres as their osmotically inactive counterparts. Additionally, the development of a biophysical model relates the freezing-induced expansion of the tissue due to the cellular water transport and the extracellular freezing thermodynamics for further verification. The magnitude of the freezing-induced dilatation was found to be not affected by the cellular water transport for the cell concentrations considered; however, the deformation patterns for different cell concentrations were different suggesting that cell-matrix interactions may have an effect. It was, therefore, determined that intracellular water transport during freezing was insignificant at the current experimental cell concentrations; however, it may be significant at concentrations similar to native tissue. Finally, the cell-matrix interactions provided mechanical support on the ECM to minimize the expansion regions in the tissues during freezing.


Subject(s)
Cryopreservation , Extracellular Fluid/metabolism , Extracellular Matrix/metabolism , Tissue Engineering , Biological Transport , Humans , Ice , Kinetics , MCF-7 Cells , Microspheres , Models, Biological , Osmosis , Thermodynamics , Water/metabolism
18.
Mol Pharm ; 10(6): 2111-26, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23517188

ABSTRACT

Nanomedicine for cancer, where nanoparticles (NPs) are used to deliver drugs, imaging agents, and heat to tumors, shows great potential of improved therapeutic outcomes. In spite of promising early stage results, its clinical efficacy is still significantly limited due to complex transport barriers in vivo. These transport barriers are associated with tumor microenvironment, which is highly complex and heterogeneous and varies spatiotemporally. Thus, in order to improve the in vivo efficacy of nanomedicine, NPs need to be designed and characterized considering their interaction with these complex transport barriers. In this article, thus, we discuss the multifaceted transport characteristics of NPs and their interaction mechanisms with the tumor microenvironment. We also illustrated that NPs have highly spatiotemporal and multiscale distribution around tumor. This dynamic and complex nature of NP transport needs to be taken into consideration in design strategies and evaluation criteria for successful delivery of cancer nanomedicine.


Subject(s)
Nanomedicine/methods , Nanoparticles/chemistry , Animals , Humans , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...