Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007705

ABSTRACT

This study investigates the automated detection of enchondromas, benign cartilage tumors, from x-ray images using deep learning techniques. Enchondromas pose diagnostic challenges due to their potential for malignant transformation and overlapping radiographic features with other conditions. Leveraging a data set comprising 1645 x-ray images from 1173 patients, a deep-learning model implemented with Detectron2 achieved an accuracy of 0.9899 in detecting enchondromas. The study employed rigorous validation processes and compared its findings with the existing literature, highlighting the superior performance of the deep learning approach. Results indicate the potential of machine learning in improving diagnostic accuracy and reducing healthcare costs associated with advanced imaging modalities. The study underscores the significance of early and accurate detection of enchondromas for effective patient management and suggests avenues for further research in musculoskeletal tumor detection.

2.
Aust Endod J ; 50(1): 131-139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38062627

ABSTRACT

The study evaluated the diagnostic performance of an artificial intelligence system to detect separated endodontic instruments on periapical radiograph radiographs. Three hundred seven periapical radiographs were collected and divided into 222 for training and 85 for testing to be fed to the Mask R-CNN model. Periapical radiographs were assigned to the training and test set and labelled on the DentiAssist labeling platform. Labelled polygonal objects had their bounding boxes automatically generated by the DentiAssist system. Fractured instruments were classified and segmented. As a result of the proposed method, the mean average precision (mAP) metric was 98.809%, the precision value was 95.238, while the recall reached 98.765 and the f1 score 96.969%. The threshold value of 80% was chosen for the bounding boxes working with the Intersection over Union (IoU) technique. The Mask R-CNN distinguished separated endodontic instruments on periapical radiographs.


Subject(s)
Artificial Intelligence , Deep Learning , Neural Networks, Computer , Algorithms , Radiography
3.
Comput Biol Med ; 146: 105547, 2022 07.
Article in English | MEDLINE | ID: mdl-35544975

ABSTRACT

Bitewing radiographic imaging is an excellent diagnostic tool for detecting caries and restorations that are difficult to view in the mouth, particularly at the molar surfaces. Labeling radiological images by an expert is a labor-intensive, time-consuming, and meticulous process. A deep learning-based approach has been applied in this study so that experts can perform dental analyzes successfully, quickly, and efficiently. Computer-aided applications can now detect teeth and number classes in bitewing radiographic images automatically. In the deep learning-based approach of the study, the neural network has a structure that works according to regions. A region-based automatic segmentation system that segments each tooth using masks to help to assist analysis as given to lessen the effort of experts. To acquire precision and recall on a test dataset, Intersection Over Union value is determined by comparing the model's classified and ground-truth boxes. The chosen IOU value was set to 0.9 to allocate bounding boxes to the class scores. Mask R-CNN is a method that serves as instance segmentation and predicts a pixel-to-pixel segmentation mask when applied to each Region of Interest. The tooth numbering module uses the FDI notation, which is widely used by dentists, to classify and number dental items found as a result of segmentation. According to the experimental results were reached 100% precision and 97.49% mAP value. In the tooth numbering, were obtained 94.35% precision and 91.51% as an mAP value. The performance of the Mask R-CNN method used has been proven by comparing it with other state-of-the-art methods.


Subject(s)
Image Processing, Computer-Assisted , Tooth , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Tooth/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...