Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; : 1-9, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742473

ABSTRACT

Strong evidence supports the anticancer properties of natural plant product isolates. The cytotoxic, genotoxic, and apoptotic properties of an oxime derivative of thymoquinone (TQ) in melanoma cancer cells were investigated. The structure of TQ-Oxime was elucidated through nuclear magnetic resonance, and its effect on B16F10 and L929 cell lines was assessed using a luminometric adenosine triphosphate assay. Intracellular reactive oxygen species (iROS) were quantified via fluorometry, mitochondrial membrane potential (MMP) was assessed using flow cytometry, glutathione (GSH) levels were measured using a luminometric GSH/oxidized glutathione assay, DNA damage via comet assay, and apoptosis was detected using acridine orange/ethidium bromide staining. Concentrations (0.5-20 µM) of TQ-Oxime significantly increased cytotoxicity, DNA damage, apoptosis, and iROS, in a concentration-dependent manner compared (p < 0.001). In addition, MMP and GSH levels decreased significantly with increasing concentrations compared with the control (p < 0.001). Overall, these findings contribute to our understanding of the therapeutic potential of TQ and its derivatives in cancer treatment.

2.
ACS Omega ; 9(3): 3305-3316, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284035

ABSTRACT

Organic semiconductors are a valuable material class for optoelectronic applications due to their electronic and optical properties. Four new symmetric and asymmetric thiophene-coumarin derivatives were designed and synthesized via Pd-catalyzed Suzuki and Stille Cross-Coupling reactions. Single crystals of all synthesized thiophene-coumarin derivatives were obtained, and π···π interactions were observed among them. The π···π interactions were supported by UV-vis, transmission electron microscopy, and atomic force microscopy analyses. The photophysical and electrochemical properties of the coumarins were investigated and supported by density functional theory studies. Fluorescence quantum yields were recorded between 36 and 66%. Moreover, mega Stokes shifts (175 nm or 8920 cm-1) were observed in these new chromophore dyes. The emission and absorption colors of the thiophene-coumarin compounds differed between their solution and film forms. Electrochemically, the highest occupied molecular orbital levels of the coumarins increased with the 3,4-ethylenedioxythiophene group, leading to a narrowing of the band gap, while the phenyl bridge weakened the donor-acceptor interaction, expanding the band gap.

3.
Macromol Rapid Commun ; 45(4): e2300552, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37962095

ABSTRACT

A new method for synthesizing cross-linked 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) using a radical-based thiol-ene click reaction is developed. This method is simple, efficient, and cost-effective, and it produces polymers with unique optical, electrochemical, and surface morphology properties. Significant blue shifts in absorption and photoinduced electron transfer in emissions are observed in the cross-linked BODIPY thin films. Cross-linking also leads to the restriction of conjugation, which results in the breakage of the terminal vinyl group, an increase in the oxidation potential, and a slight upshift in the HOMO position. As a result, the electrochemical band gap is widened from 1.88 to 1.94 eV for polymer bearing N,N-dimethylamino-BODIPY and from 1.97 to 2.02 eV for polymer bearing N,N-diphenylamino-BODIPY moieties. Monomer thin films form planar surfaces due to crystallinity, while amorphous cross-linked BODIPY polymers form more rough surfaces. Additionally, photopatterning on the film surface is successfully performed using different patterned masks. This new method for synthesizing cross-linked BODIPYs has the potential to be used in a variety of applications, including organic electronics, bioimaging, and photocatalysis.


Subject(s)
Boron Compounds , Electrons , Oxidation-Reduction , Electron Transport , Boron Compounds/chemistry , Polymers
4.
Nat Prod Res ; 37(18): 3015-3024, 2023.
Article in English | MEDLINE | ID: mdl-36412544

ABSTRACT

There are many studies in the literature on thymoquinone (TQ)-related cancer cells and models, and there is no relevant study investigating the efficacy of the oxime derivative of TQ (TQ-Ox). This study synthesized TQ-Ox and examined its cytotoxic, genotoxic and apoptotic properties in ovarian cancer cells. The structure TQ-Ox was confirmed with NMR. The cytotoxicity by luminometric ATP, intracellular reactive oxygen species (iROS) by fluorometric, intracellular calcium (iCa2+) by fluorometric, mitochondrial membrane potential (MMP) by flow cytometry, glutathione (GSH) levels with GSH/GSSG-Glo assay, DNA damage by comet assay, and apoptosis by acridine orange/ethidium bromide dye were determined. Concentrations of TQ-Ox were statistically increased cytotoxicity, DNA damage, apoptosis, iROS, and iCa2+ in a concentration-dependent manner (p < 0.001). Besides, MMP and GSH levels also decreased statistically significantly (p < 0.001) with increasing concentrations. TQ-Ox would be an effective treatment option by increasing cytotoxicity, genotoxicity, and apoptosis in ovarian carcinoma.

5.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1143-1155, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048154

ABSTRACT

Phthalonitrile derivatives are generally reported to crystallize in space groups P21/c and P1 in the literature. In this study, 7-hydroxy-4,8-dimethyl-3-pentylcoumarin (2) and its phthalonitrile derivative (2d) were crystallized; 2d crystallized in the rare trigonal space group R3. In the phthalonitrile derivative (2d), weak C-H...O hydrogen-bonding interactions promoted the formation of supramolecular double helices, and these supramolecular P and M double helices came together to form a honeycomb-like architectural motif involving one-dimensional tubular channels. In silico molecular-docking studies were performed to support the experimental processes and the results agree with each other. In vitro studies of compounds 2 and 2d were performed in LoVo colorectal adenocarcinoma and CCD18Co healthy human cell lines using flow cytometry. For compounds 2 and 2d, there was a statistically significant increase (p < 0.001) in both early and late apoptosis with respect to the control in a dose-dependent manner.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Adenocarcinoma/drug therapy , Colorectal Neoplasms/drug therapy , Coumarins/pharmacology , Crystallography, X-Ray , Humans , Hydrogen
6.
J Biomol Struct Dyn ; 40(11): 4905-4920, 2022 07.
Article in English | MEDLINE | ID: mdl-33357038

ABSTRACT

The novel coronavirus (SARS-CoV-2) causes severe acute respiratory syndrome and can be fatal. In particular, antiviral drugs that are currently available to treat infection in the respiratory tract have been experienced, but there is a need for new antiviral drugs that are targeted and inhibit coronavirus. The antiviral properties of organic compounds found in nature, especially coumarins, are known and widely studied. Coumarins, which are also metabolites in many medicinal drugs, should be investigated as inhibitors against coronavirus due to their pharmacophore properties (low toxicity and high pharmacokinetic properties). The easy addition of substituents to the chemical structures of coumarins makes these structures unique for the drug design. This study focuses on factors that increase the molecular binding and antiviral properties of coumarins. Molecular docking studies have been carried out to five different proteins (Spike S1-subunit, NSP5, NSP12, NSP15, and NSP16) of the SARS-CoV-2 and two proteins (ACE2 and VKORC1) of human. The best binding scores for 17 coumarins were determined for NSP12 (NonStructural Protein-12). The highest score (-10.01 kcal/mol) in the coumarin group is 2-morpholinoethan-1-amine substituted coumarin. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of selected ligand-protein complexes were performed. The binding energies in each 5 ns were calculated and it was found that the interaction between ligand and target protein were stable.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Coumarins , SARS-CoV-2 , Antiviral Agents/pharmacology , Coumarins/pharmacology , Drug Design , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Vitamin K Epoxide Reductases , COVID-19 Drug Treatment
7.
J Mol Struct ; 1250: 131825, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34744184

ABSTRACT

Two new complexes of Co(II) and Zn(II) 2-chlorobenzoate (2-ClBA) with 3-cyanopyridine (CNP) of the general formula [Co(2-ClBA)2(CNP)2(H2O)2] and [Zn(2-ClBA)2(CNP)2(H2O)2] were synthesized. The structures of the complexes were characterized by single crystal XRD and FT-IR and NMR spectroscopy and Mass Spectrometry (MALDI-TOF MS) methods. Mononuclear complexes exhibit octahedral coordination. In addition, Hirshfeld surface analysis was performed to determine non-covalent interactions in crystal packing. The geometry optimization of the molecules was carried out using the LANL2DZ level of theory of the DFT method and the obtained findings were confirmed by comparing with the data obtained from the single crystal X-ray diffraction method. The theoretical and experimental bond angles and lengths are very close to each other. The effectiveness of the complexes against SARS-CoV-2 enzymes was investigated in silico using the molecular docking method, and a binding score of -8.0 kcal/mol on NSP16 of complex 1 as an inhibitor was obtained. To investigate the drug potential of the complexes, their pharmacokinetic and toxicokinetic properties were estimated by ADMET calculations.

8.
Dalton Trans ; 51(2): 570-579, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34904142

ABSTRACT

In this paper, a series of new metallophthalocyanines, including ferrocene groups, were designed, synthesized and, characterized, and their photovoltaic properties were investigated as alternative electron-donor materials in bulk heterojunction (BHJ) solar cells. These products were synthesized by a Sonogashira cross-coupling reaction between tetraiodophthalocyanine and ethynyl ferrocene. The newly synthesized phthalocyanines (4-6) were characterized by FT-IR, UV-Vis, 1H NMR, and MALDI-TOF spectroscopic methods and elemental analysis. The electrochemical characterizations were carried out by cyclic voltammetry as well as differential pulse voltammetry. Density functional theory calculations were realized to prove the charge separation between ferrocene as an electron-donor and the phthalocyanine ring as an acceptor. According to UV-Vis measurements, a 25 nm red-shift was observed for complex 4 compared with complexes 5 and 6. Finally, the photovoltaic performance of these compounds used as an electron-donor moiety in a BHJ device were investigated. A function of different blend ratios was tested by fabricating a series of BHJ devices with the architecture of FTO/PEDOT:PSS/4-6: PCBM blend/Ag with an identical thickness of the active layer. The results indicated that the photovoltaic conversion efficiency of BHJ devices exhibited a strong blend-ratio dependence. The maximum power conversion efficiency was obtained by 5-based devices, as 3.65%, with a blend ratio of 1.5 : 1.0 under standard AM 1.5 illumination.

9.
Dalton Trans ; 48(34): 13046-13056, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31407759

ABSTRACT

In this study, the synthesis of novel 7-hydroxy-3-ethyl-6-hexyl-4-methylcoumarin (1), four respective phthalonitriles; 4-(7-oxy-3-ethyl-6-hexyl-4-methylcoumarin)phthalonitrile (2), 3-(7-oxy-3-ethyl-6-hexyl-4-methylcoumarin)phthalonitrile (3), 4-chloro-5-(7-oxy-3-ethyl-6-hexyl-4-methylcoumarin)phthalonitrile (4), and 4,5-bis(7-oxy-3-ethyl-6-hexyl-4-methylcoumarin)phthalonitrile (5) and their corresponding alpha tetra, beta tetra and beta octa 7-oxy-3-ethyl-6-hexyl-4-methylcoumarin and beta octa 4-chloro-5-(7-oxy-3-ethyl-6-hexyl-4-methylcoumarin) substituted Zn(ii) (6a-9a) and In(iii) Cl (6b-9b) phthalocyanines has been performed. The novel purified compounds were characterized by standard characterization techniques such as elemental analysis, thermal analysis, FT-IR, UV-vis, 1H-NMR and MALDI-TOF mass spectrometry. All of the obtained phthalocyanines showed lipophilic behaviour with excellent solubility in organic solvents such as acetone, dichloromethane, chloroform, pyridine and ethyl acetate. The fluorescence quenching behaviour was investigated using 1,4-benzoquinone and potassium iodide as quenchers. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen and photodegradation quantum yields) properties of these novel phthalocyanines (6a-9a and 6b-9b) were studied in DMF. They produced high singlet oxygen (for example ΦΔ = 0.99 for 7b) and showed appropriate photodegradation (in the order of 10-5) which is very important for photodynamic therapy (PDT), and thus these phthalocyanines can be used as Type II photosensitizers in PDT applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...