Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurogastroenterol Motil ; 27(2): 265-278, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33795544

ABSTRACT

BACKGROUND/AIMS: Gastrointestinal motility changes contribute to development and maintenance of obesity. Nesfatin-1 (NES-1) is involved in central appetite control. The aim is to elucidate effects of NES-1 and high-fat diet (HFD) on gastrointestinal motility and to explore myenteric neuron expressions of tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and neuronal nitric oxide synthase (nNOS) in HFDinduced oxidative injury. METHODS: Sprague-Dawley rats were fed with normal diet (ND) or HFD. Gastric emptying rate was measured following NES-1 (5 pmol/rat, intracerebroventricular) preceded by subcutaneous injections of glucagon-like peptide 1 (GLP-1), cholecystokinin 1 (CCK-1), and gastrin/CCK-2 receptor antagonists. In carbachol-contracted gastric and ileal strips, contractile changes were recorded by adding NES- 1 (0.3 nmol/L), GLP-1, CCK-1, and gastrin/CCK-2 antagonists. RESULTS: Neither HFD nor NES-1 changed methylcellulose emptying, but NES-1 delayed saline emptying in cannulated ND-rats. Inhibitory effect of NES-1 on gastric emptying in ND-rats was reversed by all antagonists, and abolished in HFD-rats. In HFD-rats, carbachol-induced contractility was enhanced in gastric, but inhibited in ileal strips. HFD increased body weight, while serum triglycerides, alanine transaminase, aspartate aminotransferase, glucose, and levels of malondialdehyde, glutathione, myeloperoxidase activity, and luminolchemiluminescence in hepatic, ileal, and adipose tissues were similar in ND- and HFD-rats, but only lucigenin-chemiluminescence was increased in HFD-rats. Vasoactive intestinal peptide (VIP) and TH immunoreactivities were depressed and nNOS immunoreactivity was increased in gastric tissues of HFD-rats, while VIP and TH were enhanced, but nNOS was reduced in their intestines. CONCLUSIONS: HFD caused mild systemic inflammation, disrupted enteric innervation, enhanced gastric contractility, inhibited ileal contractility, and eliminated inhibitory effect of NES-1 on gastric motility.

2.
J Surg Res ; 243: 165-172, 2019 11.
Article in English | MEDLINE | ID: mdl-31177036

ABSTRACT

BACKGROUND: 1,25 Dihydroxyvitamin D3 (1,25(OH)2D3) modulates inflammation and immune responses. Deficiency of 1,25(OH)2D3 was found to be associated with the risk of cancer, cardiovascular disease, osteoarthritis, infections, and autoimmune diseases. This study evaluated the effect of 1,25 dihydroxyvitamin D3 1,25(OH)2D3 on thioacetamide (TAA)-induced acute liver injury in rats. MATERIALS AND METHODS: Rats were treated with either saline or 1,25(OH)2D3 (0.30 µg/kg; orogastrically) for 15 d. Starting from day 13, TAA (200 mg/kg; intraperitoneally) was given for 3 d. On day 15, all rats were euthanized. Liver and blood samples were collected. RESULTS: TAA caused severe damage, increased lipid peroxidation with reductions in endogenous antioxidants, increased apoptosis, increased production of reactive oxygen species, and elevated inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) expression in liver. Extent of damage was decreased by 1,25(OH)2D3 (P < 0.01). 1,25(OH)2D3 attenuated the increase in malondialdehyde (P < 0.01), increase in myeloperoxidase (P < 0.01), increase in chemiluminescence levels (P < 0.05) and apoptotic activity (P < 0.001). Elevated liver iNOS and NF-κB expression in TAA group was also reduced by 1,25(OH)2D3 (P < 0.001, for iNOS; P < 0.001, for NF-κB). TAA group revealed high serum aspartate transaminase and alanine transaminase (ALT) activities (P < 0.01, for aspartate transaminase; P = 0.08, for ALT) and reduced albumin levels (P < 0.01) compared with control. 1,25(OH)2D3 had no statistically significant effect on these parameters. CONCLUSIONS: 1,25(OH)2D3 provides protection against hepatic injury in a rat model of TAA-induced hepatotoxicity via suppression of inflammatory reaction, oxidative stress, and apoptosis.


Subject(s)
Calcitriol/therapeutic use , Chemical and Drug Induced Liver Injury/prevention & control , Drug Evaluation, Preclinical , Animals , Apoptosis/drug effects , Calcitriol/pharmacology , Chemical and Drug Induced Liver Injury/pathology , Female , Liver/drug effects , Liver/enzymology , Liver/pathology , Random Allocation , Rats, Sprague-Dawley , Thioacetamide
3.
Nicotine Tob Res ; 19(7): 859-864, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-27613897

ABSTRACT

INTRODUCTION: Despite its adverse health consequences, tobacco smoking is associated with lower incidence of several neurodegenerative and inflammatory diseases. The present study is aimed to show the effects of nicotine, major tobacco constituent, on five organs targeted by sepsis. METHODS: Male Wistar albino rats received tap water with (5mg/kg) or without nicotine for 14 days. Under ketamine anesthesia, sepsis (n = 50) was induced by ligation and puncture of the cecum, while sham group (n = 8) had only laparotomy. In other rats, nicotine drink was withdrawn for 5 days before sepsis induction, while in acute nicotine group, rats were injected with nicotine (30mg/kg, i.p.) before sepsis, but had no oral intake. Rats were decapitated 24 hours after surgery to obtain lung, liver, ileum, heart, and kidney tissues to determine malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) activities. Data were analyzed by one-way analysis of variance and Tukey multiple comparison tests or Student's t test. RESULTS: Chronic nicotine administration or its withdrawal reduced lipid peroxidation and MPO activity and prevented GSH depletion with some varying results in different target tissues. Nicotine injection prior to sepsis depressed MPO activity in all tissues and reduced MDA levels except for the lung, while GSH levels were elevated only in the hepatic and ileal tissues. Histologically observed injury was ameliorated by all nicotine treatments at varying degrees. CONCLUSIONS: The findings of the present study indicate that long-term nicotine administration reduces sepsis-induced oxidative damage in several tissues, which appears to involve inhibition of neutrophil activity in the inflamed tissues. IMPLICATIONS: Nicotine administration or its withdrawal reduced lipid peroxidation and neutrophil content and prevented GSH depletion with some varying results in different target tissues. A single injection prior to sepsis induction depressed MPO activity in all the tissues and reduced all tissue MDA levels except for the lung. When nicotine was withdrawn for 5 days, its inhibitory effect on MPO activity was still present in all the tissues except for the liver. Microscopically an improved inflammatory response was observed in all the tissues of rats that have received different nicotine pretreatment regimens.


Subject(s)
Neutrophils/drug effects , Nicotine/pharmacology , Sepsis , Animals , Disease Models, Animal , Lipid Peroxidation/drug effects , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...