Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Mol Inform ; 43(3): e202300249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38196065

ABSTRACT

Machine learning models have found numerous successful applications in computational drug discovery. A large body of these models represents molecules as sequences since molecular sequences are easily available, simple, and informative. The sequence-based models often segment molecular sequences into pieces called chemical words, analogous to the words that make up sentences in human languages, and then apply advanced natural language processing techniques for tasks such as de novo drug design, property prediction, and binding affinity prediction. However, the chemical characteristics and significance of these building blocks, chemical words, remain unexplored. To address this gap, we employ data-driven SMILES tokenization techniques such as Byte Pair Encoding, WordPiece, and Unigram to identify chemical words and compare the resulting vocabularies. To understand the chemical significance of these words, we build a language-inspired pipeline that treats high affinity ligands of protein targets as documents and selects key chemical words making up those ligands based on tf-idf weighting. The experiments on multiple protein-ligand affinity datasets show that despite differences in words, lengths, and validity among the vocabularies generated by different subword tokenization algorithms, the identified key chemical words exhibit similarity. Further, we conduct case studies on a number of target to analyze the impact of key chemical words on binding. We find that these key chemical words are specific to protein targets and correspond to known pharmacophores and functional groups. Our approach elucidates chemical properties of the words identified by machine learning models and can be used in drug discovery studies to determine significant chemical moieties.


Subject(s)
Algorithms , Proteins , Humans , Ligands , Proteins/chemistry , Machine Learning , Molecular Structure
2.
Bioinformatics ; 39(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38019945

ABSTRACT

MOTIVATION: Technical errors in sequencing or bioinformatics steps and difficulties in alignment at some genomic sites result in false positive (FP) variants. Filtering based on quality metrics is a common method for detecting FP variants, but setting thresholds to reduce FP rates may reduce the number of true positive variants by overlooking the more complex relationships between features. The goal of this study is to develop a machine learning-based model for identifying FPs that integrates quality metrics with genomic features and with the feature interpretability property to provide insights into model results. RESULTS: We propose a random forest-based model that utilizes genomic features to improve identification of FPs. Further examination of the features shows that the newly introduced features have an important impact on the prediction of variants misclassified by VEF, GATK-CNN, and GARFIELD, recently introduced FP detection systems. We applied cost-sensitive training to avoid errors in misclassification of true variants and developed a model that provides a robust mechanism against misclassification of true variants while increasing the prediction rate of FP variants. This model can be easily re-trained when factors such as experimental protocols might alter the FP distribution. In addition, it has an interpretability mechanism that allows users to understand the impact of features on the model's predictions. AVAILABILITY AND IMPLEMENTATION: The software implementation can be found at https://github.com/ideateknoloji/FPDetect.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Genome , Software , Computational Biology
3.
J Comput Biol ; 30(11): 1240-1245, 2023 11.
Article in English | MEDLINE | ID: mdl-37988394

ABSTRACT

Robust generalization of drug-target affinity (DTA) prediction models is a notoriously difficult problem in computational drug discovery. In this article, we present pydebiaseddta: a computational software for improving the generalizability of DTA prediction models to novel ligands and/or proteins. pydebiaseddta serves as the practical implementation of the DebiasedDTA training framework, which advocates modifying the training distribution to mitigate the effect of spurious correlations in the training data set that leads to substantially degraded performance for novel ligands and proteins. Written in Python programming language, pydebiaseddta combines a user-friendly streamlined interface with a feature-rich and highly modifiable architecture. With this article we introduce our software, showcase its main functionalities, and describe practical ways for new users to engage with it.


Subject(s)
Programming Languages , Software , Proteins , Drug Discovery
4.
J Comput Biol ; 30(11): 1226-1239, 2023 11.
Article in English | MEDLINE | ID: mdl-37988395

ABSTRACT

Statistical models that accurately predict the binding affinity of an input ligand-protein pair can greatly accelerate drug discovery. Such models are trained on available ligand-protein interaction data sets, which may contain biases that lead the predictor models to learn data set-specific, spurious patterns instead of generalizable relationships. This leads the prediction performances of these models to drop dramatically for previously unseen biomolecules. Various approaches that aim to improve model generalizability either have limited applicability or introduce the risk of degrading overall prediction performance. In this article, we present DebiasedDTA, a novel training framework for drug-target affinity (DTA) prediction models that addresses data set biases to improve the generalizability of such models. DebiasedDTA relies on reweighting the training samples to achieve robust generalization, and is thus applicable to most DTA prediction models. Extensive experiments with different biomolecule representations, model architectures, and data sets demonstrate that DebiasedDTA achieves improved generalizability in predicting drug-target affinities.


Subject(s)
Models, Statistical , Proteins , Ligands , Proteins/chemistry , Drug Discovery
6.
ArXiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38764593

ABSTRACT

Detecting protein-protein interactions (PPIs) is crucial for understanding genetic mechanisms, disease pathogenesis, and drug design. However, with the fast-paced growth of biomedical literature, there is a growing need for automated and accurate extraction of PPIs to facilitate scientific knowledge discovery. Pre-trained language models, such as generative pre-trained transformers (GPT) and bidirectional encoder representations from transformers (BERT), have shown promising results in natural language processing (NLP) tasks. We evaluated the performance of PPI identification of multiple GPT and BERT models using three manually curated gold-standard corpora: Learning Language in Logic (LLL) with 164 PPIs in 77 sentences, Human Protein Reference Database with 163 PPIs in 145 sentences, and Interaction Extraction Performance Assessment with 335 PPIs in 486 sentences. BERT-based models achieved the best overall performance, with BioBERT achieving the highest recall (91.95%) and F1-score (86.84%) and PubMedBERT achieving the highest precision (85.25%). Interestingly, despite not being explicitly trained for biomedical texts, GPT-4 achieved commendable performance, comparable to the top-performing BERT models. It achieved a precision of 88.37%, a recall of 85.14%, and an F1-score of 86.49% on the LLL dataset. These results suggest that GPT models can effectively detect PPIs from text data, offering promising avenues for application in biomedical literature mining. Further research could explore how these models might be fine-tuned for even more specialized tasks within the biomedical domain.

7.
Bioinformatics ; 38(Suppl_2): ii155-ii161, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36124801

ABSTRACT

MOTIVATION: The development of novel compounds targeting proteins of interest is one of the most important tasks in the pharmaceutical industry. Deep generative models have been applied to targeted molecular design and have shown promising results. Recently, target-specific molecule generation has been viewed as a translation between the protein language and the chemical language. However, such a model is limited by the availability of interacting protein-ligand pairs. On the other hand, large amounts of unlabelled protein sequences and chemical compounds are available and have been used to train language models that learn useful representations. In this study, we propose exploiting pretrained biochemical language models to initialize (i.e. warm start) targeted molecule generation models. We investigate two warm start strategies: (i) a one-stage strategy where the initialized model is trained on targeted molecule generation and (ii) a two-stage strategy containing a pre-finetuning on molecular generation followed by target-specific training. We also compare two decoding strategies to generate compounds: beam search and sampling. RESULTS: The results show that the warm-started models perform better than a baseline model trained from scratch. The two proposed warm-start strategies achieve similar results to each other with respect to widely used metrics from benchmarks. However, docking evaluation of the generated compounds for a number of novel proteins suggests that the one-stage strategy generalizes better than the two-stage strategy. Additionally, we observe that beam search outperforms sampling in both docking evaluation and benchmark metrics for assessing compound quality. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/boun-tabi/biochemical-lms-for-drug-design and the materials (i.e., data, models, and outputs) are archived in Zenodo at https://doi.org/10.5281/zenodo.6832145. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Language , Software , Drug Design , Ligands , Proteins
9.
Biol Direct ; 16(1): 7, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33557857

ABSTRACT

Cancer is a poligenetic disease with each cancer type having a different mutation profile. Genomic data can be utilized to detect these profiles and to diagnose and differentiate cancer types. Variant calling provide mutation information. Gene expression data reveal the altered cell behaviour. The combination of the mutation and expression information can lead to accurate discrimination of different cancer types. In this study, we utilized and transferred the information of existing mutations for a novel gene selection method for gene expression data. We tested the proposed method in order to diagnose and differentiate cancer types. It is a disease specific method as both the mutations and expressions are filtered according to the selected cancer types. Our experiment results show that the proposed gene selection method leads to similar or improved performance metrics compared to classical feature selection methods and curated gene sets.


Subject(s)
Gene Expression Profiling/methods , Genomics/statistics & numerical data , Machine Learning , Neoplasms/classification , Algorithms , Neoplasms/genetics
10.
Mol Inform ; 40(5): e2000212, 2021 05.
Article in English | MEDLINE | ID: mdl-33225594

ABSTRACT

Identification of high affinity drug-target interactions is a major research question in drug discovery. Proteins are generally represented by their structures or sequences. However, structures are available only for a small subset of biomolecules and sequence similarity is not always correlated with functional similarity. We propose ChemBoost, a chemical language based approach for affinity prediction using SMILES syntax. We hypothesize that SMILES is a codified language and ligands are documents composed of chemical words. These documents can be used to learn chemical word vectors that represent words in similar contexts with similar vectors. In ChemBoost, the ligands are represented via chemical word embeddings, while the proteins are represented through sequence-based features and/or chemical words of their ligands. Our aim is to process the patterns in SMILES as a language to predict protein-ligand affinity, even when we cannot infer the function from the sequence. We used eXtreme Gradient Boosting to predict protein-ligand affinities in KIBA and BindingDB data sets. ChemBoost was able to predict drug-target binding affinity as well as or better than state-of-the-art machine learning systems. When powered with ligand-centric representations, ChemBoost was more robust to the changes in protein sequence similarity and successfully captured the interactions between a protein and a ligand, even if the protein has low sequence similarity to the known targets of the ligand.


Subject(s)
Drug Discovery/methods , Machine Learning , Protein Binding , Computational Biology/methods , Computational Chemistry/methods , Ligands
11.
Drug Discov Today ; 25(4): 689-705, 2020 04.
Article in English | MEDLINE | ID: mdl-32027969

ABSTRACT

Text-based representations of chemicals and proteins can be thought of as unstructured languages codified by humans to describe domain-specific knowledge. Advances in natural language processing (NLP) methodologies in the processing of spoken languages accelerated the application of NLP to elucidate hidden knowledge in textual representations of these biochemical entities and then use it to construct models to predict molecular properties or to design novel molecules. This review outlines the impact made by these advances on drug discovery and aims to further the dialogue between medicinal chemists and computer scientists.


Subject(s)
Drug Design , Drug Discovery/methods , Natural Language Processing , Chemistry, Pharmaceutical/methods , Computer Simulation , Humans
12.
BMC Bioinformatics ; 20(Suppl 21): 707, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31865904

ABSTRACT

BACKGROUND: Use of medication can cause adverse drug reactions (ADRs), unwanted or unexpected events, which are a major safety concern. Drug labels, or prescribing information or package inserts, describe ADRs. Therefore, systematically identifying ADR information from drug labels is critical in multiple aspects; however, this task is challenging due to the nature of the natural language of drug labels. RESULTS: In this paper, we present a machine learning- and rule-based system for the identification of ADR entity mentions in the text of drug labels and their normalization through the Medical Dictionary for Regulatory Activities (MedDRA) dictionary. The machine learning approach is based on a recently proposed deep learning architecture, which integrates bi-directional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Network (CNN), and Conditional Random Fields (CRF) for entity recognition. The rule-based approach, used for normalizing the identified ADR mentions to MedDRA terms, is based on an extension of our in-house text-mining system, SciMiner. We evaluated our system on the Text Analysis Conference (TAC) Adverse Drug Reaction 2017 challenge test data set, consisting of 200 manually curated US FDA drug labels. Our ML-based system achieved 77.0% F1 score on the task of ADR mention recognition and 82.6% micro-averaged F1 score on the task of ADR normalization, while rule-based system achieved 67.4 and 77.6% F1 scores, respectively. CONCLUSION: Our study demonstrates that a system composed of a deep learning architecture for entity recognition and a rule-based model for entity normalization is a promising approach for ADR extraction from drug labels.


Subject(s)
Drug Labeling , Drug-Related Side Effects and Adverse Reactions , Machine Learning , Data Mining , Deep Learning , Neural Networks, Computer , United States , United States Food and Drug Administration
13.
BMC Bioinformatics ; 20(1): 324, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31195961

ABSTRACT

BACKGROUND: As DNA sequencing technologies are improving and getting cheaper, genomic data can be utilized for diagnosis of many diseases such as cancer. Human raw genome data is huge in size for computational systems. Therefore, there is a need for a compact and accurate representation of the valuable information in DNA. The occurrence of complex genetic disorders often results from multiple gene mutations. The effect of each mutation is not equal for the development of a disease. Inspired from the field of information retrieval, we propose using the term frequency (tf) and BM25 term weighting measures with the inverse document frequency (idf) and relevance frequency (rf) measures to weight genes based on their mutations. The underlying assumption is that the more mutations a gene has in patients with a certain disease and the less mutations it has in other patients, the more discriminative that gene is. RESULTS: We evaluated the proposed representations on the task of cancer type classification. We applied various machine learning techniques using the tf-idf and tf-rf schemes and their BM25 versions. Our results show that the BM25-tf-rf representation leads to improved classification accuracy and f-score values compared to the other representations. The highest accuracy (76.44%) and f-score (76.95%) are achieved with the BM25-tf-rf based data representation. CONCLUSIONS: As a result of our experiments, the BM25-tf-rf scheme and the proposed neural network model is shown to be the best performing classification system for our case study of cancer type classification. This system is further utilized for causal gene analysis. Examples from the most effective genes that are used for decision making are found to be in the literature as target or causal genes.


Subject(s)
Genomics/methods , Models, Genetic , Models, Statistical , Mutation/genetics , Databases, Genetic , Exons/genetics , Humans , Introns/genetics , Machine Learning , Neoplasms/genetics , Neural Networks, Computer
14.
BMC Bioinformatics ; 20(1): 156, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30917789

ABSTRACT

BACKGROUND: Although there is an enormous number of textual resources in the biomedical domain, currently, manually curated resources cover only a small part of the existing knowledge. The vast majority of these information is in unstructured form which contain nonstandard naming conventions. The task of named entity recognition, which is the identification of entity names from text, is not adequate without a standardization step. Linking each identified entity mention in text to an ontology/dictionary concept is an essential task to make sense of the identified entities. This paper presents an unsupervised approach for the linking of named entities to concepts in an ontology/dictionary. We propose an approach for the normalization of biomedical entities through an ontology/dictionary by using word embeddings to represent semantic spaces, and a syntactic parser to give higher weight to the most informative word in the named entity mentions. RESULTS: We applied the proposed method to two different normalization tasks: the normalization of bacteria biotope entities through the Onto-Biotope ontology and the normalization of adverse drug reaction entities through the Medical Dictionary for Regulatory Activities (MedDRA). The proposed method achieved a precision score of 65.9%, which is 2.9 percentage points above the state-of-the-art result on the BioNLP Shared Task 2016 Bacteria Biotope test data and a macro-averaged precision score of 68.7% on the Text Analysis Conference 2017 Adverse Drug Reaction test data. CONCLUSIONS: The core contribution of this paper is a syntax-based way of combining the individual word vectors to form vectors for the named entity mentions and ontology concepts, which can then be used to measure the similarity between them. The proposed approach is unsupervised and does not require labeled data, making it easily applicable to different domains.


Subject(s)
Data Mining , Semantics , Algorithms , Bacteria/metabolism , Drug-Related Side Effects and Adverse Reactions , Reference Standards , Software
15.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-30689846

ABSTRACT

The Precision Medicine Initiative is a multicenter effort aiming at formulating personalized treatments leveraging on individual patient data (clinical, genome sequence and functional genomic data) together with the information in large knowledge bases (KBs) that integrate genome annotation, disease association studies, electronic health records and other data types. The biomedical literature provides a rich foundation for populating these KBs, reporting genetic and molecular interactions that provide the scaffold for the cellular regulatory systems and detailing the influence of genetic variants in these interactions. The goal of BioCreative VI Precision Medicine Track was to extract this particular type of information and was organized in two tasks: (i) document triage task, focused on identifying scientific literature containing experimentally verified protein-protein interactions (PPIs) affected by genetic mutations and (ii) relation extraction task, focused on extracting the affected interactions (protein pairs). To assist system developers and task participants, a large-scale corpus of PubMed documents was manually annotated for this task. Ten teams worldwide contributed 22 distinct text-mining models for the document triage task, and six teams worldwide contributed 14 different text-mining systems for the relation extraction task. When comparing the text-mining system predictions with human annotations, for the triage task, the best F-score was 69.06%, the best precision was 62.89%, the best recall was 98.0% and the best average precision was 72.5%. For the relation extraction task, when taking homologous genes into account, the best F-score was 37.73%, the best precision was 46.5% and the best recall was 54.1%. Submitted systems explored a wide range of methods, from traditional rule-based, statistical and machine learning systems to state-of-the-art deep learning methods. Given the level of participation and the individual team results we find the precision medicine track to be successful in engaging the text-mining research community. In the meantime, the track produced a manually annotated corpus of 5509 PubMed documents developed by BioGRID curators and relevant for precision medicine. The data set is freely available to the community, and the specific interactions have been integrated into the BioGRID data set. In addition, this challenge provided the first results of automatically identifying PubMed articles that describe PPI affected by mutations, as well as extracting the affected relations from those articles. Still, much progress is needed for computer-assisted precision medicine text mining to become mainstream. Future work should focus on addressing the remaining technical challenges and incorporating the practical benefits of text-mining tools into real-world precision medicine information-related curation.


Subject(s)
Data Mining/methods , Databases, Protein , Mutation , Precision Medicine/methods , Protein Interaction Maps , Software , Computational Biology/methods , Humans , Mutation/genetics , Mutation/physiology , Protein Interaction Mapping , Protein Interaction Maps/genetics , Protein Interaction Maps/physiology
16.
Bioinformatics ; 34(17): i821-i829, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30423097

ABSTRACT

Motivation: The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a continuum of binding strength values, also called binding affinity and predicting this value still remains a challenge. The increase in the affinity data available in DT knowledge-bases allows the use of advanced learning techniques such as deep learning architectures in the prediction of binding affinities. In this study, we propose a deep-learning based model that uses only sequence information of both targets and drugs to predict DT interaction binding affinities. The few studies that focus on DT binding affinity prediction use either 3D structures of protein-ligand complexes or 2D features of compounds. One novel approach used in this work is the modeling of protein sequences and compound 1D representations with convolutional neural networks (CNNs). Results: The results show that the proposed deep learning based model that uses the 1D representations of targets and drugs is an effective approach for drug target binding affinity prediction. The model in which high-level representations of a drug and a target are constructed via CNNs achieved the best Concordance Index (CI) performance in one of our larger benchmark datasets, outperforming the KronRLS algorithm and SimBoost, a state-of-the-art method for DT binding affinity prediction. Availability and implementation: https://github.com/hkmztrk/DeepDTA. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Protein Interaction Mapping/methods , Proteins/chemistry , Algorithms , Amino Acid Sequence , Ligands , Machine Learning , Neural Networks, Computer , Software
17.
Bioinformatics ; 34(13): i295-i303, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29949957

ABSTRACT

Motivation: The effective representation of proteins is a crucial task that directly affects the performance of many bioinformatics problems. Related proteins usually bind to similar ligands. Chemical characteristics of ligands are known to capture the functional and mechanistic properties of proteins suggesting that a ligand-based approach can be utilized in protein representation. In this study, we propose SMILESVec, a Simplified molecular input line entry system (SMILES)-based method to represent ligands and a novel method to compute similarity of proteins by describing them based on their ligands. The proteins are defined utilizing the word-embeddings of the SMILES strings of their ligands. The performance of the proposed protein description method is evaluated in protein clustering task using TransClust and MCL algorithms. Two other protein representation methods that utilize protein sequence, Basic local alignment tool and ProtVec, and two compound fingerprint-based protein representation methods are compared. Results: We showed that ligand-based protein representation, which uses only SMILES strings of the ligands that proteins bind to, performs as well as protein sequence-based representation methods in protein clustering. The results suggest that ligand-based protein description can be an alternative to the traditional sequence or structure-based representation of proteins and this novel approach can be applied to different bioinformatics problems such as prediction of new protein-ligand interactions and protein function annotation. Availability and implementation: https://github.com/hkmztrk/SMILESVecProteinRepresentation. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Computational Biology , Ligands , Proteins , Amino Acid Sequence , Cluster Analysis , Computational Biology/methods , Models, Molecular , Protein Binding , Proteins/chemistry , Sequence Analysis, Protein
18.
J Biomed Semantics ; 9(1): 17, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880031

ABSTRACT

BACKGROUND: Adverse drug reactions (ADRs), also called as drug adverse events (AEs), are reported in the FDA drug labels; however, it is a big challenge to properly retrieve and analyze the ADRs and their potential relationships from textual data. Previously, we identified and ontologically modeled over 240 drugs that can induce peripheral neuropathy through mining public drug-related databases and drug labels. However, the ADR mechanisms of these drugs are still unclear. In this study, we aimed to develop an ontology-based literature mining system to identify ADRs from drug labels and to elucidate potential mechanisms of the neuropathy-inducing drugs (NIDs). RESULTS: We developed and applied an ontology-based SciMiner literature mining strategy to mine ADRs from the drug labels provided in the Text Analysis Conference (TAC) 2017, which included drug labels for 53 neuropathy-inducing drugs (NIDs). We identified an average of 243 ADRs per NID and constructed an ADR-ADR network, which consists of 29 ADR nodes and 149 edges, including only those ADR-ADR pairs found in at least 50% of NIDs. Comparison to the ADR-ADR network of non-NIDs revealed that the ADRs such as pruritus, pyrexia, thrombocytopenia, nervousness, asthenia, acute lymphocytic leukaemia were highly enriched in the NID network. Our ChEBI-based ontology analysis identified three benzimidazole NIDs (i.e., lansoprazole, omeprazole, and pantoprazole), which were associated with 43 ADRs. Based on ontology-based drug class effect definition, the benzimidazole drug group has a drug class effect on all of these 43 ADRs. Many of these 43 ADRs also exist in the enriched NID ADR network. Our Ontology of Adverse Events (OAE) classification further found that these 43 benzimidazole-related ADRs were distributed in many systems, primarily in behavioral and neurological, digestive, skin, and immune systems. CONCLUSIONS: Our study demonstrates that ontology-based literature mining and network analysis can efficiently identify and study specific group of drugs and their associated ADRs. Furthermore, our analysis of drug class effects identified 3 benzimidazole drugs sharing 43 ADRs, leading to new hypothesis generation and possible mechanism understanding of drug-induced peripheral neuropathy.


Subject(s)
Biological Ontologies , Data Mining/methods , Drug-Related Side Effects and Adverse Reactions , Peripheral Nervous System Diseases/chemically induced
19.
Bioinformatics ; 33(14): i49-i58, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28881973

ABSTRACT

MOTIVATION: The amount of information available in textual format is rapidly increasing in the biomedical domain. Therefore, natural language processing (NLP) applications are becoming increasingly important to facilitate the retrieval and analysis of these data. Computing the semantic similarity between sentences is an important component in many NLP tasks including text retrieval and summarization. A number of approaches have been proposed for semantic sentence similarity estimation for generic English. However, our experiments showed that such approaches do not effectively cover biomedical knowledge and produce poor results for biomedical text. METHODS: We propose several approaches for sentence-level semantic similarity computation in the biomedical domain, including string similarity measures and measures based on the distributed vector representations of sentences learned in an unsupervised manner from a large biomedical corpus. In addition, ontology-based approaches are presented that utilize general and domain-specific ontologies. Finally, a supervised regression based model is developed that effectively combines the different similarity computation metrics. A benchmark data set consisting of 100 sentence pairs from the biomedical literature is manually annotated by five human experts and used for evaluating the proposed methods. RESULTS: The experiments showed that the supervised semantic sentence similarity computation approach obtained the best performance (0.836 correlation with gold standard human annotations) and improved over the state-of-the-art domain-independent systems up to 42.6% in terms of the Pearson correlation metric. AVAILABILITY AND IMPLEMENTATION: A web-based system for biomedical semantic sentence similarity computation, the source code, and the annotated benchmark data set are available at: http://tabilab.cmpe.boun.edu.tr/BIOSSES/ . CONTACT: gizemsogancioglu@gmail.com or arzucan.ozgur@boun.edu.tr.


Subject(s)
Natural Language Processing , Supervised Machine Learning , Biological Ontologies , Humans , Semantics
20.
J Biomed Semantics ; 8(1): 12, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28288685

ABSTRACT

BACKGROUND: Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. METHODS: In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. RESULTS: Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO interaction types (e.g., regulation and gene expression). CONCLUSIONS: Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through specific interaction types.


Subject(s)
Bacterial Vaccines/immunology , Biological Ontologies , Data Mining/methods , Escherichia coli/genetics , Escherichia coli/immunology , Gene Regulatory Networks , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...