Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 269: 116102, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33277065

ABSTRACT

Oil spills can result in changes in chemical concentrations along coastlines. In prior work, these concentration changes were used to evaluate the date sediment was impacted by oil (i.e., oil exposure date). The objective of the current study was to build upon prior work by using the oil exposure date to compute oil spill chemical (OSC) concentrations in shoreline sediments before and after exposure. The new method was applied to OSC concentration measures collected during the Deepwater Horizon oil spill with an emphasis on evaluating before and after concentrations in muddy versus sandy regions. The procedure defined a grid that overlaid coastal areas with chemical concentration measurement locations. These grids were then aggregated into clusters to allow the assignment of chemical concentration measurements to a uniform coastal type. Performance of the method was illustrated for ten chemicals individually by cluster, and collectively for all chemicals and all clusters. Results show statistically significant differences between chemical concentrations before and after the calculated oil exposure dates (p < 0.04 for each of the 10 chemicals within the identified clusters). When aggregating all chemical measures collectively across all clusters, chemical concentrations were lower before oil exposure in comparison to after (p < 0.0001). Sandy coastlines exhibited lower chemical concentrations relative to muddy coastlines (p < 0.0001). Overall, the method developed is a useful first step for establishing baseline chemical concentrations and for assessing the impacts of disasters on sediment quality within different coastline types. Results may be also useful for assessing added ecological and human health risks associated with oil spills.


Subject(s)
Disasters , Petroleum Pollution , Water Pollutants, Chemical , Environmental Monitoring , Gulf of Mexico , Humans , Petroleum Pollution/analysis , Sand , Water Pollutants, Chemical/analysis
2.
Environ Pollut ; 259: 113858, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31927273

ABSTRACT

Oil spills can result in changes in chemical contaminant concentrations along coastlines. When concentrations are measured along the Gulf of Mexico over time, this information can be used to evaluate oil spill shoreline exposure dates. The objective of this research was to identify more accurate oil exposure dates based on oil spill chemical concentrations changes (CCC) within sediments in coastal zones after oil spills. The results could be used to help improve oil transport models and to improve estimates of oil landings within the nearshore. The CCC method was based on separating the target coastal zone into segments and then documenting the timing of large increases in concentration for specific oil spill chemicals (OSCs) within each segment. The dataset from the Deepwater Horizon (DWH) oil spill was used to illustrate the application of the method. Some differences in exposure dates were observed between the CCC method and between oil spill trajectories. Differences may have been caused by mixing at the freshwater and sea water interface, nearshore circulation features, and the possible influence of submerged oil that is unaccounted for by oil spill trajectories. Overall, this research highlights the benefit of using an integrated approach to confirm the timing of shoreline exposure.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Water Pollutants, Chemical , Environmental Exposure , Environmental Monitoring/methods , Gulf of Mexico , Models, Theoretical , Petroleum Pollution/analysis , Water Movements , Water Pollutants, Chemical/analysis
3.
Mar Pollut Bull ; 150: 110805, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31910531

ABSTRACT

The dynamics of crude oil and different surface ocean drifters were compared to study the physical processes that govern the transport and landfall of marine oil spills. In a wave-tank experiment, drifters with drogue did not follow oil slicks. However, patches of undrogued drifters and thin bamboo plates did spread at the same rate and in the same direction as the crude oil slicks. Then, the trajectories of the Deepwater Horizon oil spill and 1300 drifters released near the spill source were investigated. Undrogued drifters were transported twice as fast as drogued drifters across the isobaths. 25% of the undrogued drifters landed, versus about 5% of the drogued ones, for the most part, on the same coastline locations where oil was found after Deepwater Horizon. Results highlight the importance of near surface gradients in controlling the cross-shelf transport and landing of surface material on the Gulf of Mexico's northern shores.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Petroleum , Gulf of Mexico , Laboratories
4.
Proc Natl Acad Sci U S A ; 115(6): 1162-1167, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29339497

ABSTRACT

Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s-1 and 0.01 ms-1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material.

5.
Proc Natl Acad Sci U S A ; 111(35): 12693-8, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136097

ABSTRACT

Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society, and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 m to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf of Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200-m to 50-km scales and clearly indicate that dispersion at the submesoscales is local, driven predominantly by energetic submesoscale fluctuations. The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Models, Theoretical , Oceanography/methods , Oil and Gas Fields , Water Pollutants, Chemical/analysis , Diffusion , Gulf of Mexico , Oceans and Seas , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...