Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Neuropsychol Child ; 11(2): 133-144, 2022.
Article in English | MEDLINE | ID: mdl-32516009

ABSTRACT

Multiscale entropy analysis (MSE) is a novel entropy-based approach for measuring dynamical complexity in physiological systems over a range of temporal scales. MSE has been successfully applied in the literature when measuring autism traits, Alzheimer's, and schizophrenia. However, until now, there has been no research on MSE applied to children with dyslexia. In this study, we have applied MSE analysis to the EEG data of an experimental group consisting of children with dyslexia as well as a control group consisting of typically developing children and compared the results. The experimental group comprised 16 participants with dyslexia who visited Ankara University Medical Faculty Child Neurology Department, and the control group comprised 20 age-matched typically developing children with no reading or writing problems. MSE was calculated for one continuous 60-s epoch for each experimental and control group's EEG session data. The experimental group showed significantly lower complexity at the lowest temporal scale and the medium temporal scales than the typically developing group. Moreover, the experimental group received 60 neurofeedback and multi-sensory learning sessions, each lasting 30 min, with Auto Train Brain. Post-treatment, the experimental group's lower complexity increased to the typically developing group's levels at lower and medium temporal scales in all channels.


Subject(s)
Dyslexia , Neurofeedback , Brain/physiology , Child , Electroencephalography/methods , Entropy , Humans
2.
Biosens Bioelectron ; 91: 225-231, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28012318

ABSTRACT

E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens.


Subject(s)
Biosensing Techniques/instrumentation , Escherichia coli Infections/microbiology , Escherichia coli O157/isolation & purification , Graphite/chemistry , Lab-On-A-Chip Devices , Nanostructures/chemistry , Antibodies, Immobilized/chemistry , Equipment Design , Food Contamination/analysis , Food Microbiology , Foodborne Diseases/microbiology , Humans , Limit of Detection , Microelectrodes , Nanostructures/ultrastructure
3.
J Nanosci Nanotechnol ; 16(6): 6425-31, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427730

ABSTRACT

In this study direct observation and dynamics of nanoscale water and nanobubbles within graphene nanoscrolls were reported. The life time of these nanobubbles is much higher than expected, which we propose is due to the combination of several factors including localized heating and surface charge. The stability of the nanobubbles within graphene nanoscrolls has been theoretically analyzed. The nanobubbles inside these nanoscrolls reveal a wide distribution of graphene-water contact angles. Bubble dynamics within these graphene nanochannels was directly observed and recorded.

4.
Colloids Surf B Biointerfaces ; 146: 39-46, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27248463

ABSTRACT

In this study, soil bacteria were isolated from nanomaterials (NMs) contaminated pond soil and enriched in the presence of graphene oxide (GO) in mineral medium to obtain NMs resistant bacteria. The isolated resistant bacteria were biochemically and genetically identified as Fontibacillus aquaticus. The resistant bacteria were allowed to interact with engineered GO in order to study the biotransformation in GO structure. Raman spectra of GO extracted from culture medium revealed decreased intensity ratio of ID/IG with subsequent reduction of CO which was consistent with Fourier transform infrared (FTIR) results. The structural changes and exfoliatied GO nanosheets were also evident from transmission electron microscopy (TEM) images. Ultraviolet-visible spectroscopy, high resolution X-ray diffraction (XRD) and current-voltage measurements confirmed the reduction of GO after the interaction with resistant bacteria. X-ray photoelectron spectroscopy (XPS) analysis of biotransformed GO revealed reduction of oxygen-containing species on the surface of nanosheets. Our results demonstrated that the presented method is an environment friendly, cost effective, simple and based on green approaches for the reduction of GO using NMs resistant bacteria.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Oxides/chemistry , Paenibacillus/chemistry , Biodegradation, Environmental , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Soil Microbiology , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , X-Ray Diffraction
5.
Appl Opt ; 41(2): 348-60, 2002 Jan 10.
Article in English | MEDLINE | ID: mdl-11899274

ABSTRACT

We present a demonstration system under the three-dimensional (3D) optoelectronic stacked processor consortium. The processor combines the advantages of optics in global, high-density, high-speed parallel interconnections with the density and computational power of 3D chip stacks. In particular, a compact and scalable optoelectronic switching system with a high bandwidth is designed. The system consists of three silicon chip stacks, each integrated with a single vertical-cavity-surface-emitting-laser-metal-semiconductor-metal detector array and an optical interconnection module. Any input signal at one end stack can be switched through the central crossbar stack to any output channel on the opposite end stack. The crossbar bandwidth is designed to be 256 Gb/s. For the free-space optical interconnection, a novel folded hybrid micro-macro optical system with a concave reflection mirror has been designed. The optics module can provide a high resolution, a large field of view, a high link efficiency, and low optical cross talk. It is also symmetric and modular. Off-the-shelf macro-optical components are used. The concave reflection mirror can significantly improve the image quality and tolerate a large misalignment of the optical components, and it can also compensate for the lateral shift of the chip stacks. Scaling of the macrolens can be used to adjust the interconnection length between the chip stacks or make the system more compact. The components are easy to align, and only passive alignment is required. Optics and electronics are separated until the final assembly step, and the optomechanic module can be removed and replaced. By use of 3D chip stacks, commercially available optical components, and simple passive packaging techniques, it is possible to achieve a high-performance optoelectronic switching system.

SELECTION OF CITATIONS
SEARCH DETAIL
...