Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(10): 5222-5231, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38354060

ABSTRACT

We present a multiscale approach to characterize the performance of photothermally powered, nanorobotic 3D microgels. Optically triggered nanoactuators, consisting of a gold nanorod core and thermoresponsive pNIPMAM shell, are used as building blocks to generate the nanorobotic 3D microgels. We use microfluidic encapsulation to physically embed the nanoactuators in an alginate network, to form the microgel droplets. The nanoactuators respond to near-infrared light owing to the synergistic effects of plasmonic and thermoresponsive components, and the nanorobotic 3D microgels generate compressive force under the same light stimulus. We use a multiscale approach to characterize this behavior for both the nanoactuators and the assembled microgels via dynamic light scattering and fluorescence microscopy, respectively. A thermoresponsive fluorescent molecule, Rhodamine B, is integrated into alginate chains to monitor the temperature of the microgels (22-59 °C) during actuation at laser intensities up to 6.4 µW µm-2. Our findings show that nanoactuators and the microgels exhibit reversible deformation above the lower critical solution temperature of the thermoresponsive polymer at 42 °C. 785 nm laser light triggers the generation of 2D radial strain in nanoactuators at a maximum of 44%, which translates to an average 2D radial strain of 2.1% in the nanorobotic microgels at 26.4 vol% nanoactuator loading. We then use a semi-experimental approach to quantify the photothermally generated forces in the microgels. Finite element modeling coupled with experimental measurements shows that nanorobotic microgels generate up to 8.5 nN of force over encapsulated single cells. Overall, our method provides a comprehensive approach to characterizing the mechanical performance of nanorobotic hydrogel networks.

2.
Adv Healthc Mater ; 12(26): e2300904, 2023 10.
Article in English | MEDLINE | ID: mdl-37229536

ABSTRACT

Here, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes. TACSI microrobots show excellent biocompatibility over 72 h in vitro, and they are capable of thermally activating single cells to cell clusters. Locomotion in a 3D workspace is achieved by relying on thermophoretic convection, and the microrobot speed is controlled within a range of 5-65 µm s-1 . In addition, light-driven actuation enables spatiotemporal control of the microrobot temperature up to a maximum of 60 °C. Using TACSI microrobots, this study targets single cells within a large population, and demonstrates thermal cell stimulation using calcium signaling as a biological output. Initial studies with human embryonic kidney 293 cells indicate a dose dependent change in intracellular calcium content within the photothermally controlled temperature range of 37-57 °C.


Subject(s)
Robotics , Animals , Humans , Robotics/methods , Lasers , Hot Temperature , Mammals
3.
Lab Chip ; 22(18): 3565-3566, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35975902

ABSTRACT

Correction for 'Actuated 3D microgels for single cell mechanobiology' by Berna Özkale et al., Lab Chip, 2022, 22, 1962-1970, https://doi.org/10.1039/D2LC00203E.

4.
Lab Chip ; 22(10): 1962-1970, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35437554

ABSTRACT

We present a new cell culture technology for large-scale mechanobiology studies capable of generating and applying optically controlled uniform compression on single cells in 3D. Mesenchymal stem cells (MSCs) are individually encapsulated inside an optically triggered nanoactuator-alginate hybrid biomaterial using microfluidics, and the encapsulating network isotropically compresses the cell upon activation by light. The favorable biomolecular properties of alginate allow cell culture in vitro up to a week. The mechanically active microgels are capable of generating up to 15% compressive strain and forces reaching 400 nN. As a proof of concept, we demonstrate the use of the mechanically active cell culture system in mechanobiology by subjecting singly encapsulated MSCs to optically generated isotropic compression and monitoring changes in intracellular calcium intensity.


Subject(s)
Mesenchymal Stem Cells , Microgels , Alginates , Biophysics , Cell Culture Techniques
5.
Biomaterials ; 267: 120497, 2021 01.
Article in English | MEDLINE | ID: mdl-33129187

ABSTRACT

Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several µN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.


Subject(s)
Biocompatible Materials , Mechanotransduction, Cellular , Animals , Biophysics , Cell Differentiation , Polymers
6.
Proc Natl Acad Sci U S A ; 116(31): 15392-15397, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31311862

ABSTRACT

Mesenchymal stem cell (MSC) therapies demonstrate particular promise in ameliorating diseases of immune dysregulation but are hampered by short in vivo cell persistence and inconsistencies in phenotype. Here, we demonstrate that biomaterial encapsulation into alginate using a microfluidic device could substantially increase in vivo MSC persistence after intravenous (i.v.) injection. A combination of cell cluster formation and subsequent cross-linking with polylysine led to an increase in injected MSC half-life by more than an order of magnitude. These modifications extended persistence even in the presence of innate and adaptive immunity-mediated clearance. Licensing of encapsulated MSCs with inflammatory cytokine pretransplantation increased expression of immunomodulatory-associated genes, and licensed encapsulates promoted repopulation of recipient blood and bone marrow with allogeneic donor cells after sublethal irradiation by a ∼2-fold increase. The ability of microgel encapsulation to sustain MSC survival and increase overall immunomodulatory capacity may be applicable for improving MSC therapies in general.


Subject(s)
Cell Encapsulation , Immunomodulation , Mesenchymal Stem Cells/cytology , Alginates/chemistry , Animals , Cells, Cultured , Gene Expression Regulation , Hematopoiesis/genetics , Immunity , Immunomodulation/genetics , Mice, Inbred BALB C , Time Factors , Transplantation, Homologous
7.
Lab Chip ; 19(5): 778-788, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30714604

ABSTRACT

We present a methodology for building biologically inspired, soft microelectromechanical systems (MEMS) devices. Our strategy combines several advanced techniques including programmable colloidal self-assembly, light-harvesting with plasmonic nanotransducers, and in situ polymerization of compliant hydrogel mechanisms. We synthesize optomechanical microactuators using a template-assisted microfluidic approach in which gold nanorods coated with thermoresponsive poly(N-isopropylmethacrylamide) (pNIPMAM) polymer function as nanoscale building blocks. The resulting microactuators exhibit mechanical properties (4.8 ± 2.1 kPa stiffness) and performance metrics (relative stroke up to 0.3 and stress up to 10 kPa) that are comparable to that of bioengineered muscular constructs. Near-infrared (NIR) laser illumination provides effective spatiotemporal control over actuation (sub-micron spatial resolution at millisecond temporal resolution). Spatially modulated hydrogel photolithography guided by an experimentally validated finite element-based design methodology allows construction of compliant poly(ethylene glycol) diacrylate (PEGDA) mechanisms around the microactuators. We demonstrate the versatility of our approach by manufacturing a diverse array of microdevices including lever arms, continuum microrobots, and dexterous microgrippers. We present a microscale compression device that is developed for mechanical testing of three-dimensional biological samples such as spheroids under physiological conditions.


Subject(s)
Micro-Electrical-Mechanical Systems , Microfluidic Analytical Techniques , Robotics , Micro-Electrical-Mechanical Systems/instrumentation , Microfluidic Analytical Techniques/instrumentation , Polymers/chemistry , Robotics/instrumentation
8.
Sci Robot ; 2(2)2017 01 04.
Article in English | MEDLINE | ID: mdl-33157864

ABSTRACT

Phagocytes, predatory cells of the immune system, continuously probe their cellular microenvironment on the hunt for invaders. This requires prey recognition followed by the formation of physical contacts sufficiently stable for pickup. Although immune cells must apply physical forces to pick up their microbial prey, little is known about their hunting behavior preceding phagocytosis because of a lack of appropriate technologies. To study phagocyte hunting behavior in which the adhesive bonds by which the prey holds on to surfaces must be broken, we exploited the use of microrobotic probes to mimic bacteria. We simulate different hunting scenarios by confronting single macrophages with prey-mimicking micromagnets using a 5-degree of freedom magnetic tweezers system (5D-MTS). The energy landscape that guided the translational and rotational movement of these microparticles was dynamically adjusted to explore how translational and rotational resistive forces regulate the modes of macrophage attacks. For translational resistive prey, distinct push-pull attacks were observed. For rod-shaped, nonresistive prey, which mimic free-floating pathogens, cells co-aligned their prey with their long axis to facilitate pickup. Increasing the rotational trap stiffness to mimic resistive or surface-bound prey disrupts this realignment process. At stiffness levels on the order of 105 piconewton nanometer radian-1, macrophages failed to realign their prey, inhibiting uptake. Our 5D-MTS was used as a proof-of-concept study to probe the translational and rotational attack modes of phagocytes with high spatial and temporal resolution, although the system can also be used for a variety of other mechanobiology studies at length scales ranging from single cells to organ-on-a-chip devices.

9.
Adv Mater ; 29(8)2017 Feb.
Article in English | MEDLINE | ID: mdl-27943524

ABSTRACT

An FeGa@P(VDF-TrFE) wire-shaped magnetoelectric nanorobot is designed and fabricated to demonstrate a proof-of-concept integrated device, which features wireless locomotion and on-site triggered therapeutics with a single external power source (i.e., a magnetic field). The device can be precisely steered toward a targeted location wirelessly by rotating magnetic fields and perform on-demand magnetoelectrically assisted drug release to kill cancer cells.


Subject(s)
Nanowires , Drug Delivery Systems , Drug Liberation , Magnetic Fields
10.
PLoS One ; 11(5): e0156644, 2016.
Article in English | MEDLINE | ID: mdl-27243628

ABSTRACT

The use of biocompatible materials, including bulk metallic glasses (BMGs), for tissue regeneration and transplantation is increasing. The good mechanical and corrosion properties of Ti40Zr10Cu38Pd12 BMG and its previously described biocompatibility makes it a potential candidate for medical applications. However, it is known that surface properties like topography might play an important role in regulating cell adhesion, proliferation and differentiation. Thus, in the present study, Ti40Zr10Cu38Pd12 BMG and Ti6-Al-4V alloy were surface-modified electrochemically (nanomesh) or physically (microscratched) to investigate the effect of material topography on human osteoblasts cells (Saos-2) adhesion, proliferation and differentiation. For comparative purposes, the effect of mirror-like polished surfaces was also studied. Electrochemical treatments led to a highly interconnected hierarchical porous structure rich in oxides, which have been described to improve corrosion resistance, whereas microscratched surfaces showed a groove pattern with parallel trenches. Cell viability was higher than 96% for the three topographies tested and for both alloy compositions. In all cases, cells were able to adhere, proliferate and differentiate on the alloys, hence indicating that surface topography plays a minor role on these processes, although a clear cell orientation was observed on microscratched surfaces. Overall, our results provide further evidence that Ti40Zr10Cu38Pd12 BMG is an excellent candidate, in the present two topographies, for bone repair purposes.


Subject(s)
Biocompatible Materials/chemistry , Bone-Implant Interface/physiology , Glass/chemistry , Osseointegration/physiology , Osteoblasts/drug effects , Osteogenesis/drug effects , Titanium/chemistry , Alloys , Bone Regeneration , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Electrochemical Techniques , Humans , Osseointegration/drug effects , Prostheses and Implants , Surface Properties
11.
ACS Appl Mater Interfaces ; 7(13): 7389-96, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25776274

ABSTRACT

In this paper, we report on the synthesis of FeCo/Cu multisegmented nanowires by means of pulse electrodeposition in nanoporous anodic aluminum oxide arrays supported on silicon chips. By adjustment of the electrodeposition conditions, such as the pulse scheme and the electrolyte, alternating segments of Cu and ferromagnetic FeCo alloy can be fabricated. The segments can be built with a wide range of lengths (15-150 nm) and exhibit a close-to-pure composition (Cu or FeCo alloy) as suggested by energy-dispersive X-ray mapping results. The morphology and the crystallographic structure of different nanowire configurations have been assessed thoroughly, concluding that Fe, Co, and Cu form solid solution. Magnetic characterization using vibrating sample magnetometry and magnetic force microscopy reveals that by introduction of nonmagnetic Cu segments within the nanowire architecture, the magnetic easy axis can be modified and the reduced remanence can be tuned to the desired values. The experimental results are in agreement with the provided simulations. Furthermore, the influence of nanowire magnetic architecture on the magnetically triggered protein desorption is evaluated for three types of nanowires: Cu, FeCo, and multisegmented FeCo15nm/Cu15nm. The application of an external magnetic field can be used to enhance the release of proteins on demand. For fully magnetic FeCo nanowires the applied oscillating field increased protein release by 83%, whereas this was found to be 45% for multisegmented FeCo15nm/Cu15nm nanowires. Our work suggests that a combination of arrays of nanowires with different magnetic configurations could be used to generate complex substance concentration gradients or control delivery of multiple drugs and macromolecules.


Subject(s)
Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Nanowires/chemistry , Nanowires/radiation effects , Proteins/chemistry , Absorption, Physicochemical/radiation effects , Adsorption/radiation effects , Cobalt/chemistry , Copper/chemistry , Crystallization/methods , Electroplating/methods , Iron/chemistry , Magnetic Fields , Materials Testing , Metal Nanoparticles/ultrastructure , Nanowires/ultrastructure , Protein Binding/radiation effects , Proteins/radiation effects
12.
Expert Opin Drug Deliv ; 11(11): 1815-26, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25001411

ABSTRACT

INTRODUCTION: Ocular microrobots have the potential to change the way in which we treat a variety of diseases at the anterior and the posterior segments of the eye. Wireless manipulation and positioning of drug delivery magnetic millimeter and submillimeter platforms into the eye constitute a potential route for minimally invasive targeted therapy. However, the field is still in its infancy and faces challenges related to the fabrication, control an interaction with complex biological environments. AREAS COVERED: This review briefly introduces the complex anatomy and physiology of the eye, which renders limitations to the current treatments of ocular diseases. The topical administration of eye drops, intravitreal injections and drug delivery implants is briefly mentioned together with their drawbacks. The authors also analyze the minimally invasive microrobotic approach as an alternative method and report the recent advancements in the fabrication, control, manipulation and drug delivery. EXPERT OPINION: Although microrobotics is a young field, a significant amount of work has been developed to face different challenges related to the minimally invasive manipulation of microdevices in the eye. Current research is already at the state of in vivo testing for systems and their biocompatibility. It is expected that the general concepts acquired will soon be applied for specific interventions, especially for posterior eye pathologies.


Subject(s)
Drug Delivery Systems/methods , Eye Diseases/drug therapy , Robotics/methods , Administration, Topical , Animals , Drug Administration Routes , Drug Implants , Humans , Intravitreal Injections , Magnetics , Ophthalmic Solutions/administration & dosage , Robotics/instrumentation
13.
Nanoscale ; 6(18): 10495-9, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-24842483

ABSTRACT

We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this work superparamagnetic magnetite nanoparticles are dispersed in SU-8 to form magnetic hemispheres. Magnetically anisotropic hemispheres as well as standard SPMPC hemispheres are fabricated. Magnetic anisotropy is programmed by applying a magnetic field during curing. The distribution of nanoparticles inside the polymer matrix and magnetic characteristics of the SPMPC are investigated. Magnetic manipulation of hemispheres is demonstrated at liquid-liquid interfaces. Different assembly strategies to form lines or geometric shapes from hemispheres as well as their independent dynamic control are demonstrated. Finally, a two-interface assembly strategy is demonstrated to assemble hemispheres into complete spheres for advanced self-assembly tasks.

14.
Small ; 10(7): 1284-8, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24339330

ABSTRACT

Hybrid helical magnetic microrobots are achieved by sequential electrodeposition of a CoNi alloy and PPy inside a photoresist template patterned by 3D laser lithography. A controlled actuation of the microrobots by a rotating magnetic field is demonstrated in a fluidic environment.


Subject(s)
Electroplating/instrumentation , Electroplating/methods , Imaging, Three-Dimensional , Magnetic Phenomena , Robotics/instrumentation , Robotics/methods , Flagella/metabolism , Flagella/ultrastructure
15.
Adv Healthc Mater ; 2(4): 591-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23197463

ABSTRACT

The surface properties of electrodeposited poly(pyrrole) (Ppy) doped with sodium dodecylbenzenesulphonate (NaDBS) are modified by two methods: addition of poly(ethylene glycol) (PEG) during the electrodeposition and through redox cycling post electrodeposition. X-ray photoelectron spectroscopy (XPS) was used to ascertain PEG incorporation and to analyze the change in the oxidation state of the polymer. Anodic cycling resulted in the formation of micrometer-sized surface cracks which increased the amount of Rhodamine-B dye adsorbed onto the surface, and played a role in decreasing the wettability of the surface. The change in surface wettability caused by these cracks was mitigated by the presence of PEG in the Ppy matrix. Compared to the incorporation of PEG, redox cycling was more effective in passively modulating the adhesion of NIH 3T3 fibroblast cells on the Ppy surface. Based on the attenuation of surface polarity of the Ppy surfaces by the incorporated PEG, a mechanism is proposed to explain the observed cell adhesion behavior.


Subject(s)
Cell Adhesion/drug effects , Cell Proliferation/drug effects , Polymers/chemistry , Polymers/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Adsorption , Animals , Benzenesulfonates/chemistry , Mice , Microscopy, Electron, Scanning , NIH 3T3 Cells , Oxidation-Reduction , Polyethylene Glycols/chemistry , Rhodamines/chemistry , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...