Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Immunobiology ; 227(4): 152237, 2022 07.
Article in English | MEDLINE | ID: mdl-35749805

ABSTRACT

The blastmodulatory Kit-M, composed of granulocyte-macrophage colony-stimulating-factor (GM-CSF) and Prostaglandin E1 (PGE1), is known to convert myeloid leukaemic blasts (from AML patients) into leukaemia derived dendritic cells (DCleu), which activate immunoreactive cells to gain antileukemic/leukaemia-specific activity. In this study we had a special focus on the influence of Kit-M treated, DC/DCleu containing patients'whole blood (WB, n = 16) on the provision of immunosuppressive regulatory T-cells. We could confirm that Kit-M significantly increased frequencies of (mature) dendritic cells (DC) and DCleu from leukemic whole blood (WB) without induction of blast proliferation. After mixed lymphocyte culture (MLC) with patients' T-cells we confirmed that DCleu mediated leukemia-specific responses- going along with activated and leukemia-specific T- and NK-cells in an intracellular cytokine staining assay (ICS) and a degranulation assay (Deg)- resulted in an increased anti-leukemic cytotoxicity (Cytotoxicity Fluorolysis Assay = CTX). We could demonstrate that (leukemia-specific) CD4+ and CD8+ regulatory T-cell population (Treg) decreased significantly after MLC compared to controls. We found significant positive correlations of leukemia-specific CD3+CD4+ cells with frequencies of (mature) DCleu. Achieved anti-leukemic cytotoxicity correlated significantly positive with leukemia-specific CD3+CD8+ cells and significantly negatively with (leukemia-specific) Treg. In summary we demonstrate that immunesuppressive (leukemia-specific) regulatory T-cells are significantly downregulated after Kit-M triggered MLC- going along with a (reinstalled) antileukemic reactivity of the immune system (as demonstrated with functional assays ICS, Deg, CTX).


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes, Regulatory , Dendritic Cells , Humans , Immunophenotyping , Lymphocyte Activation
3.
Radiat Oncol ; 16(1): 159, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34412654

ABSTRACT

BACKGROUND: Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. METHODS: By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. RESULTS: When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. CONCLUSION: In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.


Subject(s)
Breast Neoplasms/radiotherapy , Fibroblasts/physiology , Spheroids, Cellular/radiation effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Neoplasm Invasiveness , Spheroids, Cellular/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...