Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Imaging Syst Technol ; 31(1): 5-15, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32904960

ABSTRACT

Necessary screenings must be performed to control the spread of the COVID-19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions for COVID-19. The information obtained by using X-ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it is aimed to develop a machine learning method for the detection of viral epidemics by analyzing X-ray and CT images. In this study, images belonging to six situations, including coronavirus images, are classified using a two-stage data enhancement approach. Since the number of images in the dataset is deficient and unbalanced, a shallow image augmentation approach was used in the first phase. It is more convenient to analyze these images with hand-crafted feature extraction methods because the dataset newly created is still insufficient to train a deep architecture. Therefore, the Synthetic minority over-sampling technique algorithm is the second data enhancement step of this study. Finally, the feature vector is reduced in size by using a stacked auto-encoder and principal component analysis methods to remove interconnected features in the feature vector. According to the obtained results, it is seen that the proposed method has leveraging performance, especially to make the diagnosis of COVID-19 in a short time and effectively. Also, it is thought to be a source of inspiration for future studies for deficient and unbalanced datasets.

2.
J Biomed Inform ; 113: 103638, 2021 01.
Article in English | MEDLINE | ID: mdl-33271341

ABSTRACT

nowadays, considering the number of patients per specialist doctor, the size of the need for automatic medical image analysis methods can be understood. These systems, which are very advantageous compared to manual systems both in terms of cost and time, benefit from artificial intelligence (AI). AI mechanisms that mimic the decision-making process of a specialist increase their diagnosis performance day by day, depending on technological developments. In this study, an AI method is proposed to effectively classify Gastrointestinal (GI) Tract Image datasets containing a small number of labeled data. The proposed AI method uses the convolutional neural network (CNN) architecture, which is accepted as the most successful automatic classification method of today, as a backbone. According to our approach, a shallowly trained CNN architecture needs to be supported by a strong classifier to classify unbalanced datasets robustly. For this purpose, the features in each pooling layer in the CNN architecture are transmitted to an LSTM layer. A classification is made by combining all LSTM layers. All experiments are carried out using AlexNet, GoogLeNet, and ResNet to evaluate the contribution of the proposed residual LSTM structure fairly. Besides, three different experiments are carried out with 2000, 4000, and 6000 samples to determine the effect of sample number change on the proposed method. The performance of the proposed method is higher than other state-of-the-art methods.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Gastrointestinal Tract/diagnostic imaging , Humans
3.
J Digit Imaging ; 33(4): 958-970, 2020 08.
Article in English | MEDLINE | ID: mdl-32378058

ABSTRACT

Recently, the incidence of skin cancer has increased considerably and is seriously threatening human health. Automatic detection of this disease, where early detection is critical to human life, is quite challenging. Factors such as undesirable residues (hair, ruler markers), indistinct boundaries, variable contrast, shape differences, and color differences in the skin lesion images make automatic analysis quite difficult. To overcome these challenges, a highly effective segmentation method based on a fully convolutional network (FCN) is presented in this paper. The proposed improved FCN (iFCN) architecture is used for the segmentation of full-resolution skin lesion images without any pre- or post-processing. It is to support the residual structure of the FCN architecture with spatial information. This situation, which creates a more advanced residual system, enables more precise detection of details on the edges of the lesion, and an analysis independent of skin color can be performed. It offers two contributions: determining the center of the lesion and clarifying the edge details despite the undesirable effects. Two publicly available datasets, the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 Challenge and PH2 datasets, are used to evaluate the performance of the iFCN method. The mean Jaccard index is 78.34%, the mean Dice score is 88.64%, and the mean accuracy value is 95.30% for the proposed method for the ISBI 2017 test dataset. Furthermore, the mean Jaccard index is 87.1%, the mean Dice score is 93.02%, and the mean accuracy value is 96.92% for the proposed method for the PH2 test dataset.


Subject(s)
Skin Diseases , Algorithms , Dermoscopy , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...