Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 18(1): 788, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29037153

ABSTRACT

BACKGROUND: One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait's evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. RESULTS: In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal-regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. CONCLUSIONS: Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the pattern to aid in eyespot origins. New transcription factors that may be providing different identities to distinct wing sectors, and genes with sexually dimorphic expression in the eyespots were also identified.


Subject(s)
Butterflies/genetics , Calcium Signaling/genetics , Gene Expression Profiling , Pigmentation/genetics , Wound Healing , Animals , Biological Evolution , Butterflies/growth & development , Butterflies/metabolism , Cluster Analysis , Female , Gene Regulatory Networks , Male , Phenotype , Pupa/growth & development , Pupa/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Wings, Animal/metabolism
2.
Dev Biol ; 429(1): 177-185, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28668322

ABSTRACT

Eyespot patterns of nymphalid butterflies are an example of a novel trait yet, the developmental origin of eyespots is still not well understood. Several genes have been associated with eyespot development but few have been tested for function. One of these genes is the signaling ligand, wingless, which is expressed in the eyespot centers during early pupation and may function in eyespot signaling and color ring differentiation. Here we tested the function of wingless in wing and eyespot development by down-regulating it in transgenic Bicyclus anynana butterflies via RNAi driven by an inducible heat-shock promoter. Heat-shocks applied during larval and early pupal development led to significant decreases in wingless mRNA levels and to decreases in eyespot size and wing size in adult butterflies. We conclude that wingless is a positive regulator of eyespot and wing development in B. anynana butterflies.


Subject(s)
Butterflies/metabolism , Insect Proteins/metabolism , Pigmentation , Animals , Animals, Genetically Modified , Down-Regulation/genetics , Heat-Shock Response/genetics , Heterozygote , In Situ Hybridization , Insect Proteins/genetics , Models, Biological , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Wings, Animal/metabolism
3.
Cladistics ; 32(3): 308-316, 2016 Jun.
Article in English | MEDLINE | ID: mdl-34736307

ABSTRACT

We here argue that data from comparative studies of genome size and karyotypes provide important information for planning comparative research on genome evolution. We document for 39 species of sepsids that there is a four-fold difference in genome size (151-618 Mbp). Mapping genome sizes onto a phylogenetic hypothesis identifies that this range is the result of five genome expansions and four genome contractions that we here define as changes in genome size of more than 50 Mbp. We then generate karyotype data for 10 species and find no changes in chromosome number. The study reveals that the "Oriental" clade of sepsids is a promising system for studying genome evolution because it has experienced three genome expansion events. These events can be compared with an expansion in the "Neotropical" clade in order to reveal the mechanisms that underlie genome expansion in Sepsidae. A review of the literature on genome sizes and karyotypes reveals that they have been poorly documented in Metazoa. This means that researchers interested in the evolution of genome expansions and contractions are currently not being able to identify appropriate target taxa for genome sequencing. We thus argue for more comparative research on genome sizes and karyotypes and point out that historically species were chosen for genome sequencing for reasons not related to genome evolution (e.g. small genome size, model species status, phylogenetic position, interesting phenotypes). We believe that it is now time to use a more genome-centric selection criterion, where species for whole genome sequencing are selected based on their importance for understanding genome evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...