Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(10): 5409-5419, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38424003

ABSTRACT

In this paper, the potential of esterified Kraft lignin as a novel oil-soluble surfactant was examined. The lignin was chemically modified by esterification with lauric or stearic acid, making it soluble in solvents such as toluene or n-decane. Adsorption at the oil-water interface was then studied by the Du Noüy ring-method. The oil-soluble lignin behaved similar to water-soluble lignin surfactants, both the qualitative and quantitative progression of interfacial tension. Modeling revealed a surface excess of 7.5-9.0 × 10-7 mol/m2, area per molecule of 185-222 Å2, and a diffusion coefficient within the range 10-10 to 10-14 m2/s; all of which are in line with existing literature on water-soluble lignosulfonates. The data further suggested that the pendant alkyl chains were extended well into the paraffinic solvent. At last, bottle tests showed that the oil-soluble lignin was able to stabilize oil-in-water emulsions. The emulsion stability was affected by the concentration of lignin or NaCl as well as the oil phase composition. Aromatic oils exhibited lower emulsion stability in comparison to the aliphatic oil. In conclusion, a new type of surfactant was synthesized and studied, which may contribute to developing green surfactants and novel approaches to valorize technical lignin.

2.
Carbohydr Polym ; 232: 115748, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31952580

ABSTRACT

Reducing end activation of poly- and oligosaccharides by bifunctional dioxyamines and dihydrazides enables aniline-free and cyanoborohydride-free conjugation to aldehyde-containing molecules, particles and surfaces without compromising the chain structure. Chitosans are due to their polycationic character, biodegradability, and bioactivity important candidates for conjugation. Here, we present a kinetic and structural study of the conjugation of a dioxyamine and a dihydrazide to enzymatically produced chitooligosaccharides ranging from N,N'-diacetylchitobiose to a decamer, all having N-acetyl d-glucosamine at the reducing end. Conjugation of the dioxyamine resulted in mixtures of (E)- and (Z)-oximes and ß-N-pyranoside, whereas the dihydrazide yielded cyclic N-glycosides. Reaction kinetics was essentially independent of DP. Stable secondary amines were in both cases obtained by reduction with α-picoline borane, but higher temperatures were needed to obtain acceptable reduction rate. Comparison to dextran oligomers shows that the nature of the reducing end strongly influences the kinetics of both the conjugation and reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...