Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 214(4): 497-510, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26010805

ABSTRACT

BACKGROUND: The tallest animal on earth, the giraffe (Giraffa camelopardalis) is endowed with a mean arterial blood pressure (MAP) twice that of other mammals. The kidneys reside at heart level and show no sign of hypertension-related damage. We hypothesized that a species-specific evolutionary adaption in the giraffe kidney allows normal for size renal haemodynamics and glomerular filtration rate (GFR) despite a MAP double that of other mammals. METHODS: Fourteen anaesthetized giraffes were instrumented with vascular and bladder catheters to measure glomerular filtration rate (GFR) and effective renal plasma flow (ERPF). Renal interstitial hydrostatic pressure (RIHP) was assessed by inserting a needle into the medullary parenchyma. Doppler ultrasound measurements provided renal artery resistive index (RI). Hormone concentrations as well as biomechanical, structural and histological characteristics of vascular and renal tissues were determined. RESULTS: GFR averaged 342 ± 99 mL min(-1) and ERPF 1252 ± 305 mL min(-1) . RIHP varied between 45 and 140 mmHg. Renal pelvic pressure was 39 ± 2 mmHg and renal venous pressure 32 ± 4 mmHg. A valve-like structure at the junction of the renal and vena cava generated a pressure drop of 12 ± 2 mmHg. RI was 0.27. The renal capsule was durable with a calculated burst pressure of 600 mmHg. Plasma renin and AngII were 2.6 ± 0.5 mIU L(-1) and 9.1 ± 1.5 pg mL(-1) respectively. CONCLUSION: In giraffes, GFR, ERPF and RI appear much lower than expected based on body mass. A strong renal capsule supports a RIHP, which is >10-fold that of other mammals effectively reducing the net filtration pressure and protecting against the high MAP.


Subject(s)
Arterial Pressure/physiology , Giraffes/physiology , Hemodynamics/physiology , Kidney/physiology , Animals , Female , Glomerular Filtration Rate , Kidney/blood supply , Male
2.
Am J Physiol Regul Integr Comp Physiol ; 297(4): R1058-65, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19657096

ABSTRACT

How blood flow and pressure to the giraffe's brain are regulated when drinking remains debated. We measured simultaneous blood flow, pressure, and cross-sectional area in the carotid artery and jugular vein of five anesthetized and spontaneously breathing giraffes. The giraffes were suspended in the upright position so that we could lower the head. In the upright position, mean arterial pressure (MAP) was 193 +/- 11 mmHg (mean +/- SE), carotid flow was 0.7 +/- 0.2 l/min, and carotid cross-sectional area was 0.85 +/- 0.04 cm(2). Central venous pressure (CVP) was 4 +/- 2 mmHg, jugular flow was 0.7 +/- 0.2 l/min, and jugular cross-sectional area was 0.14 +/- 0.04 cm(2) (n = 4). Carotid arterial and jugular venous pressures at head level were 118 +/- 9 and -7 +/- 4 mmHg, respectively. When the head was lowered, MAP decreased to 131 +/- 13 mmHg, while carotid cross-sectional area and flow remained unchanged. Cardiac output was reduced by 30%, CVP decreased to -1 +/- 2 mmHg (P < 0.01), and jugular flow ceased as the jugular cross-sectional area increased to 3.2 +/- 0.6 cm(2) (P < 0.01), corresponding to accumulation of approximately 1.2 l of blood in the veins. When the head was raised, the jugular veins collapsed and blood was returned to the central circulation, and CVP and cardiac output were restored. The results demonstrate that in the upright-positioned, anesthetized giraffe cerebral blood flow is governed by arterial pressure without support of a siphon mechanism and that when the head is lowered, blood accumulates in the vein, affecting MAP.


Subject(s)
Anesthesia, General , Blood Pressure , Cerebrovascular Circulation , Head Movements , Jugular Veins/physiology , Posture , Ruminants/physiology , Animals , Cardiac Output , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiology , Central Venous Pressure , Gravitation , Jugular Veins/diagnostic imaging , Male , Regional Blood Flow , Telemetry , Ultrasonography, Doppler
SELECTION OF CITATIONS
SEARCH DETAIL
...