Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(6): e0011978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905305

ABSTRACT

BACKGROUND: Febrile illnesses that persist despite initial treatment are common clinical challenges in (sub)tropical low-resource settings. Our aim is to review infectious etiologies of "prolonged fevers" (persistent febrile illnesses, PFI) and to quantify relative contributions of selected neglected target diseases with limited diagnostic options, often overlooked, causing inadequate antibiotic prescriptions, or requiring prolonged and potentially toxic treatments. METHODS: We performed a systematic review of articles addressing the infectious etiologies of PFI in adults and children in sub-/tropical low- and middle-income countries (LMICs) using the PRISMA guidelines. A list of target diseases, including neglected parasites and zoonotic bacteria (e.g., Leishmania and Brucella), were identified by infectious diseases and tropical medicine specialists and prioritized in the search. Malaria and tuberculosis (TB) were not included as target diseases due to well-established epidemiology and diagnostic options. Four co-investigators independently extracted data from the identified articles while assessing for risk of bias. RESULTS: 196 articles from 52 countries were included, 117 from Africa (33 countries), 71 from Asia (16 countries), and 8 from Central and -South America (3 countries). Target diseases were reported as the cause of PFI in almost half of the articles, most frequently rickettsioses (including scrub typhus), relapsing fever borreliosis (RF-borreliosis), brucellosis, enteric fever, leptospirosis, Q fever and leishmaniasis. Among those, RF-borreliosis was by far the most frequently reported disease in Africa, particularly in Eastern Africa. Rickettsioses (including scrub typhus) were often described in both Africa and Asia. Leishmaniasis, toxoplasmosis and amoebiasis were the most frequent parasitic etiologies. Non-target diseases and non-tropical organisms (Streptococcus pneumoniae, Escherichia coli, and non-typhoidal Salmonella spp) were documented in a fifth of articles. CONCLUSIONS: Clinicians faced with PFI in sub-/tropical LMICs should consider a wide differential diagnosis including enteric fever and zoonotic bacterial diseases (e.g., rickettsiosis, RF-borreliosis and brucellosis), or parasite infections (e.g., leishmaniasis) depending on geography and syndromes. In the absence of adequate diagnostic capacity, a trial of antibiotics targeting relevant intra-cellular bacteria, such as doxycycline or azithromycin, may be considered.


Subject(s)
Fever , Neglected Diseases , Humans , Neglected Diseases/epidemiology , Fever/etiology , Fever/epidemiology , Tropical Climate , Africa/epidemiology , Animals , Brucellosis/epidemiology , Brucellosis/complications , Brucellosis/diagnosis
2.
J Infect Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687181

ABSTRACT

BACKGROUND: Within a year of the SARS-CoV-2 pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine induced immunity led to implementation of additional vaccine boosters. METHODS: This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2 vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 Spike-specific T cells were determined after each vaccine dose using the Activation Induced Markers (AIM) assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS: We found a significant increase in SARS-CoV-2 Spike-specific CD4+ and CD8+ T cell responses following the third dose of a SARS-CoV-2 mRNA vaccine as well as enhanced CD8+ T cell responses after the fourth dose. Further, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSION: Our findings highlight the boosting effect on T cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T cell immunity although with reduced levels in the elderly.

SELECTION OF CITATIONS
SEARCH DETAIL
...