Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Vet Hung ; 69(3): 282-290, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34460430

ABSTRACT

The aim of this study was to investigate the effect of Lactobacillus reuteri E81 (LRE) probiotic supplementation on heat stress responses in chukar partridges (Alectoris chukar). The birds were divided into two groups, one of which was exposed to heat stress (HS). Within each group, four subgroups, each including 64 birds, were created for the three treatment doses (200, 400 or 600 mg/kg) of LRE and the control. The experiment was started with day-old birds, kept at a temperature of 25 °C or 37 °C. After a 7-day adjustment period, the LRE supplementation lasted for 35 days. The levels of different adipokines, including visfatin (VF), adiponectin (ADP), chemerin (CHEM), as well as the concentration of plasma citrulline (CIT) and the levels of thyroid hormones (T3 and T4) and thyroid-stimulating hormone (TSH) in the blood were measured at 21 and 42 days of age. A significant correlation (P < 0.01) was found between LRE supplementation and the decrease in serum VF, ADP, CIT, T3 and T4 levels in partridges exposed to HS. On the other hand, no significant relationship was found between LRE supplementation and the serum CHEM and TSH levels (P > 0.05). We concluded that the addition of 600 mg/kg LRE is beneficial in preventing intestinal damage and inflammation provoked by HS.


Subject(s)
Galliformes , Probiotics , Adipokines , Animals , Heat-Shock Response , Thyroid Hormones
2.
Turk J Med Sci ; 51(5): 2263-2273, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34092050

ABSTRACT

Background/aim/AIM: SARS-CoV-2 disease was announced as a pandemic by The World Health Organization in early 2020. It is still threatening the world population. Here, we aimed to produce hyperimmune sera that contain immunoglobulin G and F(ab')2 fragments sourced from horse antibodies as an urgent response to the pandemic. Materials and methods: SARS-CoV-2 was produced and inactivated with three different methods [formaldehyde (FA), formaldehyde, and binary ethylene amine (FA + BEI), and heat treatment]. After in vitro inactivation control, immunogens were mixed with Freund's adjuvant, thereafter horses (n: 2 for FA, 4 for FA + BEI, 2 for heat inactivation) and New Zealand rabbits (n: 6 for FA, 6 fo r FA + BEI, 6 for heat inactivation) were immunized four times. Neutralizing antibody levels of the sera were measured at the 4th, 6th, and 8th weeks. When the antibodies were detected at the peak level, plasma was collected from horses and hyperimmune sera procured after the purification process. Results: Horses and rabbits produced highly neutralizing antibodies against the SARS-CoV-2 in FA and FA + BEI inactivation groups, foreign proteins were removed effectively after purification. Conclusion: This study presents a profitable practice to develop specific antisera in horses against SARS-CoV-2 for emergency and low-cost response. In further studies, new purification methods can be used to increase the efficiency of the final product.


Subject(s)
Immune Sera/pharmacology , Immunologic Factors/pharmacology , SARS-CoV-2/drug effects , Animals , Horses , Rabbits , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...