Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 231: 107179, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37321408

ABSTRACT

Pancreatic cancer has a poor prognosis and is an important public health problem for developing countries. Oxidative stress plays an important role in cancer initiation, progression, proliferation, invasion, angiogenesis and metastasis. For this reason, one of the important strategic targets of new cancer therapeutics is to drive cancer cells into apoptosis through oxidative stress. In nuclear and mitochondrial DNA, 8-hydroxy-2'-deoxyguanosine and gamma-H2AX (γ-H2AX) are used as important oxidative stress biomarkers. Fusaric acid (FA) is a mycotoxin that mediates toxicity produced by Fusarium species and exhibits anticancer effects in various cancers via inducing apoptosis, cell cycle arrest, or other cellular mechanisms. The aim of this study was to determine the effects of fusaric acid on cytotoxic and oxidative damage in MIA PaCa-2 and PANC-1 cell lines. In this context, dose and time dependent cytotoxic effect of fusaric acid was determined by XTT method, mRNA expression levels of genes related to DNA repair were determined by RT-PCR, and its effect on 8-hydroxy-2'-deoxyguanosine and γ-H2AX levels was revealed by ELISA assay. According to XTT results, fusaric acid inhibits cell proliferation in MIA PaCa-2 and Panc-1 cells in a dose- and time-dependent manner. IC50 doses were determined as 187.74 µM at 48 h in MIA PaCa-2 cells and 134.83 µM at 48 h in PANC-1 cells, respectively. γ-H2AX and 8-OHdG changes were not found significant in pancreatic cancer cells. The mRNA expression levels of DNA repair-related genes NEIL1, OGG1, XRCC and Apex-1 change with exposure to fusaric acid. This study contributes to the therapeutic approaches to be developed for pancreatic cancer and demonstrates the potential of fusaric acid as an anticancer agent.

2.
Eur J Trauma Emerg Surg ; 49(5): 2203-2213, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37296330

ABSTRACT

PURPOSE: In an effort to better manage critically ill patients hospitalised in the intensive care unit (ICU) after experiencing multiple traumas, the present study aimed to assess whether plasma levels of intestinal epithelial cell barrier proteins, including occludin, claudin-1, junctional adhesion molecule (JAM-1), tricellulin and zonulin, could be used as novel biomarkers. Additional potential markers such as intestinal fatty acid-binding protein (I-FABP), D-lactate, lipopolysaccharide (LPS) and citrulline were also evaluated. We also aimed to determine the possible relationships between the clinical, laboratory, and nutritional status of patients and the measured marker levels. METHODS: Plasma samples from 29 patients (first, second, fifth and tenth days in the ICU and on days 7, 30 and 60 after hospital discharge) and 23 controls were subjected to commercial enzyme-linked immunosorbent assay (ELISA) testing. RESULTS: On first day (admission) and on the second day, plasma I-FABP, D-lactate, citrulline, occludin, claudin-1, tricellulin and zonulin levels were high in trauma patients and positively correlated with lactate, C-reactive protein (CRP), number of days of ICU hospitalisation, Acute Physiology and Chronic Health Evaluation II (APACHE II) score and daily Sequential Organ Failure Assessment (SOFA) scores (P < 0.05-P < 0.01). CONCLUSION: The results of the present study showed that occludin, claudin-1, tricellulin and zonulin proteins, as well as I-FABP, D-lactate and citrulline, may be used as promising biomarkers for the evaluation of disease severity in critically ill trauma patients, despite the complexity of the analysis of various barrier markers. However, our results should be supported by future studies.


Subject(s)
Citrulline , Critical Illness , Humans , Claudin-1 , MARVEL Domain Containing 2 Protein , Occludin , Prospective Studies , Biomarkers , Intensive Care Units , Lactates , Prognosis
3.
Blood Cells Mol Dis ; 100: 102728, 2023 05.
Article in English | MEDLINE | ID: mdl-36738539

ABSTRACT

BACKGROUND: Gaucher disease (GD) is the most common autosomal recessive lipid storage disease. In this study, the changes in TFH cells and IL-4 and IL-21 cytokines in blood samples of GD patients, carriers and healthy volunteers were investigated. METHODS: Two pretreatment type 1 GD patients, 20 currently treated type 1 GD patients, 6 carriers, and 27 healthy volunteers were enrolled in the study. TFH cell (CD45RA-CD4+CXCR5+) number, phenotype (PD1, ICOS expression), and cytokine production (IL-21, IL-4) were assessed via flow cytometric assays. RESULTS: No significant differences were found between the groups with respect to the number, frequency and PD1 or ICOS expression of TFH cells between healthy controls, patients and carriers. However, IL-4+ TFH cells were significantly reduced both in percent and number in the treated GD patients compared with healthy controls (p < 0.05). Interestingly, the IL-21+ TFH cell number was increased in treated GD patients. When TFH cells were examined based on CXCR3 expression, the frequency of the PD1+Th17-Th2-like fraction (CXCR3-) was found to be significantly increased in treated GD patients. CONCLUSION: To our knowledge, this is the first study to assess TFH cells in GD patients, and to show that the production of IL-4 and IL-21 by TFH cells and their subsets may be altered in type 1 GD patients.


Subject(s)
Gaucher Disease , T Follicular Helper Cells , Humans , T-Lymphocytes, Helper-Inducer/metabolism , Gaucher Disease/metabolism , Interleukin-4 , Interleukins , CD4-Positive T-Lymphocytes
4.
Clin Biochem ; 111: 26-31, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36257477

ABSTRACT

BACKGROUND AND AIMS: Gaucher disease (GD) is caused by a genetic deficiency of the beta-glucocerebrosidase enzyme which results in the accumulation of glucosylceramide in macrophages. This accumulation may induce oxidative stress, resulting in DNA damage in patients with GD. The aim of this study was to assess plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and cytokinesis-block micronucleus cytome (CBMN-cyt) assay parameters in the peripheral blood lymphocytes of patients with GD and carriers, evaluate the possible associations of these values with GD, and determine whether they can be used as potential biomarkers in GD. METHODS: This study included 20 patients with type 1 GD, six carriers, and 27 age- and sex-matched healthy controls. CBMN-cyt assay parameters in peripheral blood lymphocytes of the patients with GD, carriers, and controls were evaluated and 8-OHdG levels in their plasma samples were measured. RESULTS: CBMN-cyt assay parameters in patients with GD and carriers were not significantly different when compared with controls (p > 0.05). However, plasma 8-OHdG levels were found to be higher in both patients with GD and carriers than in control subjects (p < 0.01). CONCLUSIONS: Oxidative DNA damage may be a useful prognostic tool, whereas the CBMN-cyt assay cannot be used as a predictive biomarker of GD.


Subject(s)
Gaucher Disease , Humans , Micronucleus Tests/methods , Gaucher Disease/genetics , Cell Nucleus/genetics , 8-Hydroxy-2'-Deoxyguanosine , Biomarkers , DNA Damage , Lymphocytes , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...