Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946701

ABSTRACT

Among migratory vertebrates, high levels of fidelity to non-breeding sites during adulthood are common. If occupied sites vary in quality, strong site fidelity can have profound consequences for individual fitness and population demography. Given the prevalence of adult site fidelity, the regions of the non-breeding range to which juveniles first migrate, and the scale of any subsequent movements, are likely to be pivotal in shaping distributions and demographic processes across population ranges. However, inherent difficulties in tracking migratory individuals through early life mean that opportunities to quantify juvenile settlement and movements across non-breeding ranges, and the mechanisms involved, are extremely rare. Through long-term, range-wide resightings of hundreds of colour-marked individuals from their first migration to adulthood and the application of state-space models, we quantify levels of juvenile and adult regional-scale movements and distances at different life stages across the whole non-breeding distribution range in a migratory shorebird, the Black-tailed Godwit (Limosa limosa islandica). We show that the probability of individuals changing non-breeding regions (seven historical wintering regions spanning the Western Europe range) at all ages is very low (mean movement probability = 10.9% from first to subsequent winter, and 8.3% from first adult winter to later winters). Movement between regions was also low between autumn and winter of the same year for both juveniles (mean movement probability = 17.0%) and adults (10.4%). The great majority of non-breeding movements from the first autumn to adulthood were within regions and less than 100 km. The scarcity of regional-scale non-breeding movements from the first autumn to adulthood means that the factors influencing where juveniles settle will be key determinants of non-breeding distributions and of the rate and direction of changes in distributions.

2.
Ecol Evol ; 12(8): e9184, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35949536

ABSTRACT

In migratory systems, variation in individual phenology can arise through differences in individual migratory behaviors, and this may be particularly apparent in partial migrant systems, where migrant and resident individuals are present within the same population. Links between breeding phenology and migratory behavior or success are generally investigated at the individual level. However, for breeding phenology in particular, the migratory behaviors of each member of the pair may need to be considered simultaneously, as breeding phenology will likely be constrained by timing of the pair member that arrives last, and carryover effects on breeding success may vary depending on whether pair members share the same migratory behavior or not. We used tracking of marked individuals and monitoring of breeding success from a partially migrant population of Eurasian oystercatchers (Haematopus ostralegus) breeding in Iceland to test whether (a) breeding phenology varied with pair migratory behavior; (b) within-pair consistency in timing of laying differed among pair migratory behaviors; and (c) reproductive performance varied with pair migratory behavior, timing of laying, and year. We found that annual variation in timing of laying differed among pair migratory behaviors, with resident pairs being more consistent than migrant and mixed pairs, and migrant/mixed pairs breeding earlier than residents in most years but later in one (unusually cold) year. Pairs that laid early were more likely to replace their clutch after nest loss, had higher productivity and higher fledging success, independent of pair migratory behavior. Our study suggests that the links between individual migratory behavior and reproductive success can vary over time and, to a much lesser extent, with mate migratory behavior and can be mediated by differences in laying dates. Understanding these cascading effects of pair phenology on breeding success is likely to be key to predicting the impact of changing environmental conditions on migratory species.

3.
Ecol Evol ; 9(15): 8856-8864, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31410285

ABSTRACT

In migratory birds, early arrival on breeding sites is typically associated with greater breeding success, but the mechanisms driving these benefits are rarely known. One mechanism through which greater breeding success among early arrivers can potentially be achieved is the increased time available for replacement clutches following nest loss. However, the contribution of replacement clutches to breeding success will depend on seasonal variation in nest survival rates, and the consequences for juvenile recruitment of hatching at different times in the season. In particular, lower recruitment rates of late-hatched chicks could offset the benefits to early arrivers of being able to lay replacement clutches, which would reduce the likelihood of replacement clutch opportunities influencing selection on migratory timings. Using a simulation model of time-constrained capacity for replacement clutches, paramaterized with empirically-derived estimates from avian migratory systems, we show that greater reproductive success among early-arriving individuals can arise solely through the greater time capacity for replacement clutches among early arrivers, even when later renesting attempts contribute fewer recruits to the population. However, these relationships vary depending on the seasonal pattern of nest survival. The benefits of early arrival are greatest when nest survival rates are constant or decline seasonally, and early arrival is least beneficial when nest success rates increase over the breeding season, although replacement clutches can mitigate this effect. The time benefits of early arrival facilitating replacement clutches following nest loss may therefore be an important but overlooked source of selection on migratory timings. Empirical measures of seasonal variation in nest survival, renesting, and juvenile recruitment rates are therefore needed in order to identify the costs and benefits associated with individual migration phenology, the selection pressures influencing migratory timings, and the implications for ongoing shifts in migration and breeding phenology.

SELECTION OF CITATIONS
SEARCH DETAIL
...