Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Hortic Res ; 10(9): uhad156, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719273

ABSTRACT

Plants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial Fragaria vesca adapted to warmer temperatures (28°C vs. 18°C) over three asexual generations. Differences in flowering time, stolon number, and petiole length were induced by warmer temperature in one or more ecotypes after three asexual generations and persisted in a common garden environment. Induced methylome changes differed between the four ecotypes from Norway, Iceland, Italy, and Spain, but shared methylome responses were also identified. Most differentially methylated regions (DMRs) occurred in the CHG context, and most CHG and CHH DMRs were hypermethylated at the warmer temperature. In eight CHG DMR peaks, a highly similar methylation pattern could be observed between ecotypes. On average, 13% of the differentially methylated genes between ecotypes also showed a temperature-induced change in gene expression. We observed ecotype-specific methylation and expression patterns for genes related to gibberellin metabolism, flowering time, and epigenetic mechanisms. Furthermore, we observed a negative correlation with gene expression when repetitive elements were found near (±2 kb) or inside genes. In conclusion, lasting phenotypic changes indicative of an epigenetic memory were induced by warmer temperature and were accompanied by changes in DNA methylation patterns. Both shared methylation patterns and transcriptome differences between F. vesca accessions were observed, indicating that DNA methylation may be involved in both general and ecotype-specific phenotypic variation.

7.
9.
J Neurosci ; 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35501151

ABSTRACT

Understanding the pathogenesis of nigral dopaminergic neurodegeneration is critical for developing mechanism-based treatments for Parkinson's disease (PD). In the nigral dopaminergic neurons of postmortem human PD brains, we found that CREB, a well-recognized pro-survival transcription factor in neurons, was inactivated by dephosphorylation at Ser133. CREB dephosphorylation correlated with decreased expression of NURR1, one of its target genes crucial for dopaminergic neuron survival, confirming that CREB function was impaired in nigral dopaminergic neurons in PD. An MPTP mouse model was used to further elucidate the mechanism underlying CREB dephosphorylation. Protein phosphatase 1γ (PP1γ), which dephosphorylates CREB, was constitutively associated with histone deacetylase 1 (HDAC1). HDAC1 promotes CREB Ser133 dephosphorylation via a stable interaction with PP1γ. We found that CREB interacted with the HDAC1/PP1γ complex during dopaminergic neurodegeneration. Importantly, increased CREB/HDAC1 interaction occurred in the nigral dopaminergic neurons of PD patients as demonstrated using a proximity ligation assay. Disrupting CREB/HDAC1 interaction via either overexpression of GAL4 M1, a CREB mutant, or administration of trichostatin A, a pan-HDAC inhibitor, restored the expression levels of phospho-CREB (Ser133) and NURR1, and protected nigral dopaminergic neurons in the MPTP-treated mice brain. Collectively, our results demonstrated that HDAC1/PP1γ-mediated CREB inactivation contributed to dopaminergic neuronal degeneration. Disruption of CREB/HDAC1 interaction has the potential as a new approach for PD therapy.Significance StatementPD is the most common movement disorder attributed to the progressive loss of dopaminergic neurons in the substantia nigra. Understanding the pathogenesis of nigral dopaminergic neurodegeneration is critical for developing mechanism-based treatments for PD. We found in nigral dopaminergic neurons of postmortem human PD brains that CREB, a well-recognized pro-survival transcription factor in neurons, was inactivated by dephosphorylation at Ser133. HDAC1, constitutively associated with PP1γ, interacted with CREB to mediate its dephosphorylation during dopaminergic degeneration. Disrupting CREB/HDAC1 interaction restored CREB activity and protected nigral dopaminergic neurons in the MPTP mouse brains. This work suggests that disruption of the CREB/HDAC1 interaction to restore CREB activity may be a potential therapeutic approach in PD.

10.
Curr Zool ; 68(1): 113-119, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169634

ABSTRACT

Sexual conflict is common in animals, and female sexual cannibalism represents an extreme form of sexual conflict. Males in many species have evolved a variety of strategies to circumvent or decrease the risk of female sexual cannibalism. Opportunistic mating, by which a male mates with a female when she is disturbed or when she is feeding or undertaking moulting, is one of such kinds of strategies, and widely occurs in many animals, especially in spiders. However, whether the occurrence of male opportunistic mating depends on the intensity of female sexual cannibalism remains largely unexplored. We predicted a positive correlation between them. In this study, we tested this prediction by performing a series of mating trials in the laboratory using 3 species of web-building spiders with different intensities of female sexual cannibalism: Nephila pilipes, Nephilengys malabarensis, and Parasteatoda tepidariorum. We found that the occurrence of male opportunistic mating was positively, though not statistically significantly, correlated with the intensity of female sexual cannibalism, thus supporting our hypothesis. All together, we provide evidence that male opportunistic mating may have evolved to respond to the selection pressure posed by female sexual cannibalism.

12.
Arterioscler Thromb Vasc Biol ; 41(4): 1428-1445, 2021 04.
Article in English | MEDLINE | ID: mdl-33626912
13.
Arterioscler Thromb Vasc Biol ; 41(6): e284-e298, 2021 06.
Article in English | MEDLINE | ID: mdl-33441025
SELECTION OF CITATIONS
SEARCH DETAIL
...