Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
3.
Fa Yi Xue Za Zhi ; 40(2): 199-201, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38847038
7.
J Pers Med ; 14(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793101

ABSTRACT

This study investigates the correlation between REM sleep patterns, as measured by the Apple Watch, and depressive symptoms in an undiagnosed population. Employing the Apple Watch for data collection, REM sleep duration and frequency were monitored over a specified period. Concurrently, participants' depressive symptoms were evaluated using standardized questionnaires. The analysis, primarily using Spearman's correlation, revealed noteworthy findings. A significant correlation was observed between an increased REM sleep proportion and higher depressive symptom scores, with a correlation coefficient of 0.702, suggesting a robust relationship. These results highlight the potential of using wearable technology, such as the Apple Watch, in early detection and intervention for depressive symptoms, suggesting that alterations in REM sleep could serve as preliminary indicators of depressive tendencies. This approach offers a non-invasive and accessible means to monitor and potentially preempt the progression of depressive disorders. This study's implications extend to the broader context of mental health, emphasizing the importance of sleep assessment in routine health evaluations, particularly for individuals exhibiting early signs of depressive symptoms.

10.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38514179

ABSTRACT

Associative learning involves complex interactions of multiple cognitive factors. While adult subjects can articulate these factors verbally, for model animals such as macaques, we rely on behavioral outputs. In our study, we used pupillary responses as an alternative measure to capture these underlying cognitive changes. We recorded the dynamic changes in the pupils of three male macaques when they learned the associations between visual stimuli and reward sizes under the classical Pavlovian experimental paradigm. We found that during the long-term learning process, the gradual changes in the pupillary response reflect the changes in the cognitive state of the animals. The pupillary response can be explained by a linear combination of components corresponding to multiple cognitive factors. These components reflect the impact of visual stimuli on the pupils, the prediction of reward values associated with the visual stimuli, and the macaques' understanding of the current experimental reward rules. The changing patterns of these factors during interday and intraday learning clearly demonstrate the enhancement of current reward-stimulus association and the weakening of previous reward-stimulus association. Our study shows that the dynamic response of pupils can serve as an objective indicator to characterize the psychological changes of animals, understand their learning process, and provide important tools for exploring animal behavior during the learning process.


Subject(s)
Association Learning , Cognition , Conditioning, Classical , Pupil , Reward , Animals , Male , Association Learning/physiology , Pupil/physiology , Conditioning, Classical/physiology , Cognition/physiology , Photic Stimulation/methods , Macaca mulatta , Reflex, Pupillary/physiology
11.
eNeuro ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395611

ABSTRACT

Stroke damage to the primary visual cortex (V1) causes severe visual deficits, which benefit from perceptual retraining. However, whereas training with high-contrast stimuli can locally restore orientation and motion direction discrimination abilities at trained locations, it only partially restores luminance contrast sensitivity (CS). Recent work revealed that high-contrast discrimination abilities may be preserved in the blind field of some patients early after stroke. Here, we asked if CS for orientation and direction discrimination is similarly preserved inside the blind field, to what extent, and whether it could benefit from a visual training intervention. Thirteen subacute patients (<3 months post-V1-stroke) and 12 chronic patients (>6 months post-V1-stroke) were pre-tested, then trained to discriminate either orientation or motion direction of Gabor patches of progressively lower contrasts as their performance improved. At baseline, more subacute than chronic participants could correctly discriminate the orientation of high-contrast Gabors in their blind field, but all failed to perform this task at lower contrasts, even when 10Hz flicker or motion direction were added. Training improved CS in a greater portion of subacute than chronic participants, but no-one attained normal CS, even when stimuli contained flicker or motion. We conclude that, unlike the near-complete training-induced restoration of high-contrast orientation and motion direction discrimination abilities, V1 damage in adulthood may severely limit the residual visual system's ability to regain normal CS. Our results support the notion that CS involves different neural substrates and computations than those required for orientation and direction discrimination in V1-damaged visual systems.Significance statement Stroke-induced V1 damage in adult humans induces a rapid and severe impairment of contrast sensitivity for orientation and motion direction discrimination in the affected hemifield, although discrimination of high-contrast stimuli can persist for several months. Adaptive training with Gabor patches of progressively lower contrasts improves contrast sensitivity for both orientation and motion discriminations in the blind-field of subacute (<3 months post-stroke) and chronic (>6 months post-stroke) participants; however, it fails to restore normal contrast sensitivity. Nonetheless, more subacute than chronic stroke participants benefit from such training, particularly when discriminating the orientation of static, non-flickering targets. Thus, contrast sensitivity appears critically dependent on processing within V1, with perceptual training displaying limited potential to fully restore it after V1 damage.

17.
J Neurosci ; 43(47): 8000-8017, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37845034

ABSTRACT

Although overconsumption of high-fat foods is a major driver of weight gain, the neural mechanisms that link the oral sensory properties of dietary fat to reward valuation and eating behavior remain unclear. Here we combine novel food-engineering approaches with functional neuroimaging to show that the human orbitofrontal cortex (OFC) translates oral sensations evoked by high-fat foods into subjective economic valuations that guide eating behavior. Male and female volunteers sampled and evaluated nutrient-controlled liquid foods that varied in fat and sugar ("milkshakes"). During oral food processing, OFC activity encoded a specific oral-sensory parameter that mediated the influence of the foods' fat content on reward value: the coefficient of sliding friction. Specifically, OFC responses to foods in the mouth reflected the smooth, oily texture (i.e., mouthfeel) produced by fatty liquids on oral surfaces. Distinct activity patterns in OFC encoded the economic values associated with particular foods, which reflected the subjective integration of sliding friction with other food properties (sugar, fat, viscosity). Critically, neural sensitivity of OFC to oral texture predicted individuals' fat preferences in a naturalistic eating test: individuals whose OFC was more sensitive to fat-related oral texture consumed more fat during ad libitum eating. Our findings suggest that reward systems of the human brain sense dietary fat from oral sliding friction, a mechanical food parameter that likely governs our daily eating experiences by mediating interactions between foods and oral surfaces. These findings identify a specific role for the human OFC in evaluating oral food textures to mediate preference for high-fat foods.SIGNIFICANCE STATEMENT Fat and sugar enhance the reward value of food by imparting a sweet taste and rich mouthfeel but also contribute to overeating and obesity. Here we used a novel food-engineering approach to realistically quantify the physical-mechanical properties of high-fat liquid foods on oral surfaces and used functional neuroimaging while volunteers sampled these foods and placed monetary bids to consume them. We found that a specific area of the brain's reward system, the orbitofrontal cortex, detects the smooth texture of fatty foods in the mouth and links these sensory inputs to economic valuations that guide eating behavior. These findings can inform the design of low-calorie fat-replacement foods that mimic the impact of dietary fat on oral surfaces and neural reward systems.


Subject(s)
Prefrontal Cortex , Taste , Humans , Male , Female , Taste/physiology , Prefrontal Cortex/diagnostic imaging , Feeding Behavior , Dietary Fats , Sugars , Reward
18.
Dev Med Child Neurol ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464573
SELECTION OF CITATIONS
SEARCH DETAIL
...