Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36081012

ABSTRACT

Specular highlights detection and removal in images is a fundamental yet non-trivial problem of interest. Most modern techniques proposed are inadequate at dealing with real-world images taken under uncontrolled conditions with the presence of complex textures, multiple objects, and bright colours, resulting in reduced accuracy and false positives. To detect specular pixels in a wide variety of real-world images independent of the number, colour, or type of illuminating source, we propose an efficient Specular Segmentation (SpecSeg) network based on the U-net architecture that is expeditious to train on nominal-sized datasets. The proposed network can detect pixels strongly affected by specular highlights with a high degree of precision, as shown by comparison with the state-of-the-art methods. The technique proposed is trained on publicly available datasets and tested using a large selection of real-world images with highly encouraging results.

2.
J Imaging ; 8(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35200726

ABSTRACT

The fetus head circumference (HC) is a key biometric to monitor fetus growth during pregnancy, which is estimated from ultrasound (US) images. The standard approach to automatically measure the HC is to use a segmentation network to segment the skull, and then estimate the head contour length from the segmentation map via ellipse fitting, usually after post-processing. In this application, segmentation is just an intermediate step to the estimation of a parameter of interest. Another possibility is to estimate directly the HC with a regression network. Even if this type of segmentation-free approaches have been boosted with deep learning, it is not yet clear how well direct approach can compare to segmentation approaches, which are expected to be still more accurate. This observation motivates the present study, where we propose a fair, quantitative comparison of segmentation-based and segmentation-free (i.e., regression) approaches to estimate how far regression-based approaches stand from segmentation approaches. We experiment various convolutional neural networks (CNN) architectures and backbones for both segmentation and regression models and provide estimation results on the HC18 dataset, as well agreement analysis, to support our findings. We also investigate memory usage and computational efficiency to compare both types of approaches. The experimental results demonstrate that even if segmentation-based approaches deliver the most accurate results, regression CNN approaches are actually learning to find prominent features, leading to promising yet improvable HC estimation results.

3.
Sensors (Basel) ; 17(5)2017 May 20.
Article in English | MEDLINE | ID: mdl-28531101

ABSTRACT

Long-term place recognition in outdoor environments remains a challenge due to high appearance changes in the environment. The problem becomes even more difficult when the matching between two scenes has to be made with information coming from different visual sources, particularly with different spectral ranges. For instance, an infrared camera is helpful for night vision in combination with a visible camera. In this paper, we emphasize our work on testing usual feature point extractors under both constraints: repeatability across spectral ranges and long-term appearance. We develop a new feature extraction method dedicated to improve the repeatability across spectral ranges. We conduct an evaluation of feature robustness on long-term datasets coming from different imaging sources (optics, sensors size and spectral ranges) with a Bag-of-Words approach. The tests we perform demonstrate that our method brings a significant improvement on the image retrieval issue in a visual place recognition context, particularly when there is a need to associate images from various spectral ranges such as infrared and visible: we have evaluated our approach using visible, Near InfraRed (NIR), Short Wavelength InfraRed (SWIR) and Long Wavelength InfraRed (LWIR).

4.
Sensors (Basel) ; 15(6): 13851-73, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26076403

ABSTRACT

The objective of this article is to study the problem of pedestrian classification across different light spectrum domains (visible and far-infrared (FIR)) and modalities (intensity, depth and motion). In recent years, there has been a number of approaches for classifying and detecting pedestrians in both FIR and visible images, but the methods are difficult to compare, because either the datasets are not publicly available or they do not offer a comparison between the two domains. Our two primary contributions are the following: (1) we propose a public dataset, named RIFIR , containing both FIR and visible images collected in an urban environment from a moving vehicle during daytime; and (2) we compare the state-of-the-art features in a multi-modality setup: intensity, depth and flow, in far-infrared over visible domains. The experiments show that features families, intensity self-similarity (ISS), local binary patterns (LBP), local gradient patterns (LGP) and histogram of oriented gradients (HOG), computed from FIR and visible domains are highly complementary, but their relative performance varies across different modalities. In our experiments, the FIR domain has proven superior to the visible one for the task of pedestrian classification, but the overall best results are obtained by a multi-domain multi-modality multi-feature fusion.

5.
Opt Express ; 14(13): 5916-27, 2006 Jun 26.
Article in English | MEDLINE | ID: mdl-19516761

ABSTRACT

In the framework of Stokes parameters imaging, polarizationencoded images have four channels which makes physical interpretation of such multidimensional structures hard to grasp at once. Furthermore, the information content is intricately combined in the parameters channels which involve the need for a proper tool that allows the analysis and understanding this kind of images. In this paper we address the problem of analyzing polarization-encoded images and explore the potential of this information for classification issues and propose ad hoc color displays as an aid to the interpretation of physical properties content. The color representation schemes introduced hereafter employ a technique that uses novel Poincaré Sphere to color spaces mapping coupled with a segmentation map as an a priori information in order to allow, at best, a distribution of the information in the appropriate color space. The segmentation process relies on the fuzzy C-means clustering algorithms family where the used distances were redefined in relation with our images specificities. Local histogram equalization is applied to each class in order to bring out the intra-class's information smooth variations. The proposed methods are applied and validated with Stokes images of biological tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...