Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 152: 108432, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37030092

ABSTRACT

Adenosine-5-triphosphate (ATP) is the main energy vector in biological systems, thus its regeneration is an important issue for the application of many enzymes of interest in biocatalysis and synthetic biology. We have developed an electroenzymatic ATP regeneration system consisting in a gold electrode modified with a floating phospholipid bilayer that allows coupling the catalytic activity of two membrane-bound enzymes: NiFeSe hydrogenase from Desulfovibrio vulgaris and F1Fo-ATP synthase from Escherichia coli. Thus, H2 is used as a fuel for producing ATP. This electro-enzymatic assembly is studied as ATP regeneration system of phosphorylation reactions catalysed by kinases, such as hexokinase and NAD+-kinase for respectively producing glucose-6-phosphate and NADP+.


Subject(s)
Adenosine Triphosphate , Regeneration , Biocatalysis , Phosphorylation , Adenosine Triphosphate/metabolism , Catalysis
2.
Bioelectrochemistry ; 150: 108361, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36621050

ABSTRACT

Clean energy vectors are needed towards a fossil fuel-free society, diminishing both greenhouse effect and pollution. Electrochemical water splitting is a clean route to obtain green hydrogen, the cleanest fuel; although efficient electrocatalysts are required to avoid high overpotentials in this process. The combination of inorganic semiconductors with biocatalysts for photoelectrochemical H2 production is an alternative approach to overcome this challenge. N-type semiconductors can be coupled to a co-catalyst for H2 production in the presence of a sacrificial electron donor in solution, but the replacement of the latter with an electrode is a challenge. In this work we attach a NiFeSe-hydrogenase with high activity for H2 production with the n-type semiconductor indium sulfide, which upon visible irradiation is able to transfer its excited electrons to the enzyme. In order to enhance the transfer of the generated holes towards the electrode for their replenishment, we have explored the inclusion of a p-type material, NiO, to induce a p-n junction for H2 production in a photoelectrochemical biocatalytic system in absence of sacrificial reagents.


Subject(s)
Hydrogenase , Fluorine , Electrodes , Hydrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...