Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(38): e202305323, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37524654

ABSTRACT

High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super-exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC ) but E S 1 ≥ 2 E T 1 ${{E}_{{S}_{1}}\ge {2E}_{{T}_{1}}}$ form triplets in MOF in contrast to the frameworks that are built from linkers with sizable kISC but E S 1 ≤ 2 E T 1 ${{E}_{{S}_{1}}\le {2E}_{{T}_{1}}}$ . This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.

SELECTION OF CITATIONS
SEARCH DETAIL
...